Shrews (family Soricidae) are small mole-like mammals classified in the order Eulipotyphla. True shrews are not to be confused with , , , West Indies shrews, or , which belong to different families or orders.
Although its external appearance is generally that of a long-nosed mouse, a shrew is not a rodent, as mice are. It is, in fact, a much closer relative of hedgehogs and moles; shrews are related to rodents only in that both belong to the Boreoeutheria magnorder. Shrews have sharp, spike-like teeth, whereas rodents have gnawing front incisor teeth.
Shrews are distributed almost worldwide. Among the major tropical and temperate land masses, only New Guinea, Australia, New Zealand, and South America have no native shrews. However, as a result of the Great American Interchange, South America does have a relatively recently naturalised population, present only in the northern Andes.
The shrew family has 385 known species, making it the fourth-most species-diverse mammal family. The only mammal families with more species are the Muroidea families (Muridae and Cricetidae) and the bat family Vespertilionidae.
They do not Hibernation, but some species are capable of entering torpor. In winter, many species undergo morphological changes that drastically reduce their body weight. Shrews can lose between 30% and 50% of their body weight, shrinking the size of bones, skull, and internal organs.
Whereas rodents have gnawing that grow throughout life, the teeth of shrews wear down throughout life, a problem made more extreme because they lose their milk teeth before birth, so have only one set of teeth throughout their lifetimes. In some species, exposed areas of the teeth contain iron and are dark red. While this coloration was once thought to be caused by the iron, new research indicates this may not be the case. Regardless, the iron reinforces the surfaces that are exposed to the most stress, which helps prolong the life of the teeth. This adaptation is not found in species with lower metabolism, which do not have to eat as much and therefore do not wear down the enamel to the same degree. The only other mammals' teeth with pigmented enamel are the incisors of rodents. Apart from the first pair of incisors, which are long and sharp, and the chewing molars at the back of the mouth, the teeth of shrews are small and peg-like, and may be reduced in number. The dental formula of shrews is:
Shrews are fiercely territorial, driving off rivals, and coming together only to mate. Many species dig for catching food and hiding from , although this is not universal.
Female shrews can have up to 10 litters a year; in the tropics, they breed all year round; in temperate zones, they cease breeding only in the winter. Shrews have gestation periods of 17–32 days. The female often becomes pregnant within a day or so of giving birth, and lactation during her pregnancy, weaning one litter as the next is born. Shrews live 12 to 30 months.
A characteristic behaviour observed in many species of shrew is known as "caravanning". This is when a litter of young shrews form a line behind the mother, each gripping the shrew in front by the fur at the base of the tail.
Shrews are unusual among mammals in a number of respects. Unlike most mammals, some species of shrews are . Shrew venom is not conducted into the wound by , but by grooves in the teeth. The venom contains various compounds, and the contents of the venom glands of the American short-tailed shrew are sufficient to kill 200 mice by intravenous injection. One chemical extracted from shrew venom may be potentially useful in the treatment of high blood pressure, while another compound may be useful in the treatment of some neuromuscular diseases and . The saliva of the northern short-tailed shrew ( Blarina brevicauda) contains soricidin, a peptide which has been studied for use in treating ovarian cancer. Also, along with the and , some species of shrews use echolocation. Unlike most other mammals, shrews lack (also called the ), so have incomplete .
Echolocation
Except for large and thus strongly reflecting objects, such as a big stone or tree trunk, they probably are not able to disentangle echo scenes, but rather derive information on habitat type from the overall call reverberations. This might be comparable to human hearing whether one calls into a beech forest or into a reverberant wine cellar.
Classification
See also
Further reading
External links
|
|