A peatland is a type of wetland whose soils consist of organic matter from decaying plants, forming layers of peat. Peatlands arise because of incomplete decomposition of organic matter, usually litter from vegetation, due to water-logging and subsequent anoxic waters. Peatlands are unusual landforms that derive mostly from biological rather than physical processes, and can take on characteristic shapes and surface patterning.
The formation of peatlands is primarily controlled by climatic conditions such as precipitation and temperature, although terrain relief is a major factor as waterlogging occurs more easily on flatter ground and in basins.
Peatlands are the largest natural Carbon sink on land. Covering around 3 million km2 globally, they sequester 0.37 gigatons (Gt) of carbon dioxide () a year. Peat soils store over 600 Gt of carbon, more than the carbon stored in all other vegetation types, including forests. This substantial carbon storage represents about 30% of the world's soil carbon, underscoring their critical importance in the global carbon cycle. In their natural state, peatlands provide a range of ecosystem services, including minimising flood risk and erosion, purifying water and regulating climate.
Peatlands are under threat by commercial peat harvesting, drainage and conversion for agriculture (notably palm oil in the tropics) and fires, which are predicted to become more frequent with climate change. The destruction of peatlands results in release of stored into the atmosphere, further exacerbating climate change.
There are two types of mire: bog and fen. A bog is a mire that, due to its raised location relative to the surrounding landscape, obtains all its water solely from precipitation (ombrotrophic). A fen is located on a slope, flat, or in a depression and gets most of its water from the surrounding mineral soil or from groundwater (minerotrophic). Thus, while a bog is always acidic and nutrient-poor, a fen may be slightly acidic, neutral, or alkaline, and either nutrient-poor or nutrient-rich. All mires are initially fens when the peat starts to form, and may turn into bogs once the height of the peat layer reaches above the surrounding land. A quagmire is a floating (quaking) mire, bog, or any peatland being in a stage of hydrosere or hydrarch (hydroseral) succession, resulting in pond-filling yields underfoot (). Ombrotrophic types of quagmire may be called quaking bog (quivering bog). Minerotrophic types can be named with the term quagfen.
Some can also be peatlands (e.g. peat swamp forest), while are generally not considered to be peatlands. Swamps are characterized by their forest canopy or the presence of other tall and dense vegetation like Cyperus papyrus. Like fens, swamps are typically of higher pH level and nutrient availability than bogs. Some bogs and fens can support limited shrub or tree growth on . A marsh is a type of wetland within which vegetation is rooted in mineral soil.
The largest accumulation of mires constitutes around 64% of global peatlands and is found in the temperate, boreal and subarctic zones of the Northern Hemisphere. Mires are usually shallow in polar regions because of the slow rate of accumulation of dead organic matter, and often contain permafrost and . Very large swathes of Canada, northern Europe and northern Russia are covered by boreal mires. In temperate zones mires are typically more scattered due to historical drainage and peat extraction, but can cover large areas. One example is blanket bog where precipitation is very high i.e., in maritime climates inland near the coasts of the north-east and south Pacific, and the north-west and north-east Atlantic. In the sub-tropics, mires are rare and restricted to the wettest areas.
Mires can be extensive in the tropics, typically underlying tropical rainforest (for example, in Kalimantan, the Congo Basin and Amazon basin). Tropical peat formation is known to occur in coastal as well as in areas of high altitude. Tropical mires largely form where high precipitation is combined with poor conditions for drainage. Tropical mires account for around 11% of peatlands globally (more than half of which can be found in Southeast Asia), and are most commonly found at low altitudes, although they can also be found in mountainous regions, for example in South America, Africa and Papua New Guinea. Indonesia, particularly on the islands of Sumatra, Kalimantan and Papua, has one of the largest peatlands in the world, with an area of about 24 million hectares. These peatlands play an important role in global carbon storage and have very high biodiversity. However, peatlands in Indonesia also face major threats from deforestation and forest fires. In the early 21st century, the world's largest tropical mire was found in the Central Congo Basin, covering 145,500 km2 and storing up to 1013 kg of carbon.
The total area of mires has declined globally due to drainage for agriculture, forestry and peat harvesting. For example, more than 50% of the original European mire area which is more than 300,000 km2 has been lost. Some of the largest losses have been in Russia, Finland, the Netherlands, the United Kingdom, Poland and Belarus. A catalog of the peat research collection at the University of Minnesota Duluth provides references to research on worldwide peat and peatlands.
Generally, whenever the inputs of carbon into the soil from dead organic matter exceed the carbon outputs via organic matter decomposition, peat is formed. This occurs due to the anoxic state of water-logged peat, which slows down decomposition. Peat-forming vegetation is typically also recalcitrant (poorly decomposing) due to high lignin and low nutrient content. Topography, accumulating peat elevates the ground surface above the original topography. Mires can reach considerable heights above the underlying mineral soil or bedrock: peat depths of above 10 m have been commonly recorded in temperate regions (many temperate and most boreal mires were removed by ice sheets in the last Ice Age), and above 25 m in tropical regions.7 When the absolute decay rate of peat in the catotelm (the lower, water-saturated zone of the peat layer) matches the rate of input of new peat into the catotelm, the mire will stop growing in height.8
The water table position of a peatland is the main control of its carbon release to the atmosphere. When the water table rises after a rainstorm, the peat and its microbes are submerged under water inhibiting access to oxygen, reducing release via respiration. Carbon dioxide release increases when the water table falls lower, such as during a drought, as this increases the availability of oxygen to the aerobic microbes thus accelerating peat decomposition. Levels of methane emissions also vary with the water table position and temperature. A water table near the peat surface gives the opportunity for anaerobic microorganisms to flourish.
are strictly anaerobic organisms and produce methane from organic matter in anoxic conditions below the water table level, while some of that methane is oxidised by above the water table level. Therefore, changes in water table level influence the size of these methane production and consumption zones. Increased soil temperatures also contribute to increased seasonal methane flux. A study in Alaska found that methane may vary by as much as 300% seasonally with wetter and warmer soil conditions due to climate change.
Peatlands are important for studying past climate because they are sensitive to changes in the environment and can reveal levels of , pollutants, , metals from the atmosphere and pollen. For example, carbon-14 dating can reveal the age of the peat. The dredging and destruction of a peatland will release the carbon dioxide that could reveal irreplaceable information about the past climatic conditions. Many kinds of microorganisms inhabit peatlands, due to the regular supply of water and abundance of peat forming vegetation. These microorganisms include but are not limited to , algae, bacteria, zoobenthos, of which Sphagnum species are most abundant.
Peatlands are used by humans in modern times for a range of purposes, the most dominant being agriculture and forestry, which accounts for around a quarter of global peatland area. This involves cutting drainage ditches to lower the water table with the intended purpose of enhancing the productivity of forest cover or for use as pasture or cropland. Agricultural uses for mires include the use of natural vegetation for hay crop or grazing, or the cultivation of crops on a modified surface. In addition, the commercial extraction of peat for energy production is widely practiced in Northern European countries, such as Russia, Sweden, Finland, Ireland and the Baltic states.
Tropical peatlands comprise 0.25% of Earth's terrestrial land surface but store 3% of all soil and forest carbon stocks. The use of this land by humans, including draining and harvesting of tropical peat forests, results in the emission of large amounts of carbon dioxide into the atmosphere. In addition, fires occurring on peatland dried by the draining of peat bogs release even more carbon dioxide. The economic value of a tropical peatland was once derived from raw materials, such as wood, bark, resin and latex, the extraction of which did not contribute to large carbon emissions. In Southeast Asia, peatlands are drained and cleared for human use for a variety of reasons, including the production of palm oil and timber for export in primarily developing nations. This releases stored carbon dioxide and prevents the system from sequestering carbon again.
The biotic and abiotic factors controlling Southeast Asian peatlands are interdependent. Its soil, hydrology and morphology are created by the present vegetation through the accumulation of its own organic matter, building a favorable environment for this specific vegetation. This system is therefore vulnerable to changes in hydrology or vegetation cover.Hooijer, A., Silvius, M., Wösten, H. and Page, S. 2006. PEAT-CO2, Assessment of CO2 emissions from drained peatlands in SE Asia. Delft Hydraulics report Q3943. [1] These peatlands are mostly located in developing regions with impoverished and rapidly growing populations. These lands have become targets for commercial logging, paper pulp production and conversion to plantations through Clearcutting, drainage and burning. Drainage of tropical peatlands alters the hydrology and increases their susceptibility to fire and soil erosion, as a consequence of changes in physical and chemical compositions.
With a warming climate, these burnings are expected to increase in intensity and number. This is a result of a dry climate together with an extensive rice farming project, called the Mega Rice Project, started in the 1990s, which converted 1 Mha of peatlands to Paddy field. Forest and land was cleared by burning and 4000 km of channels drained the area.Boehm, H.-D. V., Siegert, F., Rieley, J. O. et al (2001). Fire impacts and carbon release on tropical peatlands in central Kalimantan, Indonesia. 22nd Asian Conference on Remote Sensing, 5–9 November 2001, Singapore. Centre for Remote Imaging, Sensing and Processing (CRISP), University of Singapore.
target="_blank" rel="nofollow">[3] Drought and acidification of the lands led to bad harvest and the project was abandoned in 1999. Similar projects in China have led to immense loss of tropical marshes and fens due to rice production.
Drainage, which also increases the risk of burning, can cause additional emissions of CO2 by 30–100 t/ha/year if the water table is lowered by only 1 m. The draining of peatlands is likely the most important and long-lasting threat to peatlands globally, but is especially prevalent in the tropics.
Peatlands release the greenhouse gas methane which has strong global warming potential. However, subtropical wetlands have shown high CO2 binding per mol of released methane, which is a function that counteracts global warming. Tropical peatlands are suggested to contain about 100 Gt carbon,
Of all northern circumpolar countries, Russia has the largest area of peatlands, and contains the largest peatland in the world, The Vasyugan Swamp. Nakaikemi Wetland in southwest Honshu, Japan is more than 50,000 years old and has a depth of 45 m. The Philippi Peatland in Greece has probably one of the deepest peat layers with a depth of 190 m.
provide an environment where organic carbon is stored in living plants, dead plants and peat, as well as converted to carbon dioxide and methane. Three main factors give wetlands the ability to sequester and store carbon: high biological productivity, high water table and low decomposition rates. Suitable Meteorology and hydrological conditions are necessary to provide an abundant water source for the wetland. Fully water-saturated wetland soils allow anaerobic conditions to manifest, storing carbon but releasing methane.
Wetlands make up about 5-8% of Earth's land surface, but contain about 20-30% of the planet's 2500 Gt soil carbon stores. Peatlands contain the highest amounts of soil organic carbon of all wetland types. Wetlands can become sources of carbon, rather than sinks, as the decomposition occurring within the ecosystem emits methane. Natural peatlands do not always have a measurable cooling effect on the climate in a short time span as the cooling effects of sequestering carbon are offset by the emission of methane, which is a strong greenhouse gas. However, given the short "lifetime" of methane (12 years), it is often said that methane emissions are unimportant within 300 years compared to carbon sequestration in wetlands. Within that time frame or less, most wetlands become both net carbon and Radiative flux sinks. Hence, peatlands do result in cooling of the Earth's climate over a longer time period as methane is oxidised quickly and removed from the atmosphere whereas atmospheric carbon dioxide is continuously absorbed. Throughout the Holocene (the past 12,000 years), peatlands have been persistent terrestrial and have had a net cooling effect, sequestering 5.6 to 38 grams of carbon per square metre per year. On average, it has been estimated that today northern peatlands sequester 20 to 30 grams of carbon per square metre per year.
Peatlands insulate the permafrost in subarctic regions, thus delaying thawing during summer, as well as inducing the formation of permafrost. As the global climate continues to warm, wetlands could become major carbon sources as higher temperatures cause higher carbon dioxide emissions.
Compared with untilled cropland, wetlands can sequester around two times the carbon. Carbon sequestration can occur in constructed wetlands as well as natural ones. Estimates of greenhouse gas fluxes from wetlands indicate that natural wetlands have lower fluxes, but man-made wetlands have a greater carbon sequestration capacity. The carbon sequestration abilities of wetlands can be improved through restoration and protection strategies, but it takes several decades for these restored ecosystems to become comparable in carbon storage to peatlands and other forms of natural wetlands.
Studies highlight the critical role of peatlands in biodiversity conservation and Hydrology stability. These are unique habitats for diverse species, including specific and , and act as natural Reservoir, releasing water during dry periods to sustain nearby freshwater ecosystems and agriculture.
When undertaken in such a way that preserves the hydrological state of a mire, the anthropogenic use of mires' resources can avoid significant greenhouse gas emissions. However, continued drainage will result in increased release of carbon, contributing to global warming. As of 2016, it was estimated that drained peatlands account for around 10% of all greenhouse gas emissions from agriculture and forestry.
Palm oil plantations have replaced much of the forested peatlands in Southeast Asia. Estimates now state that 12.9 Mha or about 47% of peatlands in Southeast Asia were deforested by 2006. In their natural state, peatlands are waterlogged with high water tables making for an inefficient soil. To create viable soil for plantation, the mires in Tropics of Indonesia and Malaysia are drained and cleared.
The peatland forests harvested for palm oil production serve as above- and below-ground carbon stores, containing at least 42,069 million metric tonnes (Mt) of soil carbon. Exploitation of this land raises many environmental concerns, namely increased greenhouse gas emissions, risk of fires and a decrease in biodiversity. Greenhouse gas emissions for palm oil planted on peatlands is estimated to be between the equivalent of 12.4 (best case) to 76.6 t CO2/ha (worst case). Tropical peatland converted to palm oil plantation can remain a net source of carbon to the atmosphere after 12 years.
In their natural state, peatlands are resistant to fire. Drainage of peatlands for palm oil plantations creates a dry layer of flammable peat. As peat is carbon dense, fires occurring in compromised peatlands release extreme amounts of both carbon dioxide and toxic smoke into the air. These fires add to greenhouse gas emissions while also causing thousands of deaths every year.
Decreased biodiversity due to deforestation and drainage makes these ecosystem more vulnerable and less resilient to change. Homogenous ecosystems are at an increased risk to extreme climate conditions and are less likely to recover from fires.
In recent years, the occurrence of in peatlands has increased significantly worldwide particularly in the tropical regions. This can be attributed to a combination of drier weather and changes in land use which involve the drainage of water from the landscape. This resulting loss of biomass through combustion has led to significant emissions of both in tropical and boreal/temperate peatlands. Fire events are predicted to become more frequent with the warming and drying of the global climate.
Often, restoration is done by blocking drainage channels in the peatland, and allowing natural vegetation to recover. Rehabilitation projects undertaken in North America and Europe usually focus on the rewetting of peatlands and revegetation of native species. This acts to mitigate carbon release in the short term before the new growth of vegetation provides a new source of organic litter to fuel the peat formation in the long term. UNEP is supporting peatland restoration in Indonesia.
Peat extraction is forbidden in Chile since April 2024.
|
|