Perfluorooctanoic acid ( PFOA; conjugate acid perfluorooctanoate; also known colloquially as C8, from its chemical formula C8HF15O2) is a perfluorinated carboxylic acid produced and used worldwide as an industrial surfactant in chemical processes and as a chemical precursor. PFOA is considered a surfactant, or fluorosurfactant, due to its chemical structure, which consists of a perfluorinated, n-heptyl "tail group" and a carboxylic acid "head group". The head group can be described as hydrophilic while the fluorocarbon tail is both hydrophobic and lipophobic.
The International Agency for Research on Cancer (IARC) has classified PFOA as carcinogenic to humans. PFOA is one of many synthetic organofluorine compounds collectively known as per- and polyfluoroalkyl substances (PFASs). Many PFAS such as PFOS, PFOA are a concern because they do not break down via natural processes and are commonly described as persistent organic pollutants or "forever chemicals". They can also move through soils and contaminate drinking water sources and can build up (Bioaccumulation) in fish and wildlife. Residues have been detected in humans and wildlife.
PFOA is used in several industrial applications, including carpeting, upholstery, apparel, floor wax, textiles, fire fighting foam and sealants. PFOA serves as a surfactant in the emulsion polymerization of fluoropolymers and as a chemical precursor for the synthesis of perfluoroalkyl-substituted compounds, polymers, and polymeric materials. PFOA has been manufactured since the 1940s in industrial quantities. It is also formed by the degradation of precursors such as some . PFOA is used as a surfactant because it can lower the surface tension of water more than hydrocarbon surfactants while having exceptional stability due to having perfluoroalkyl tail group. The stability of PFOA is desired industrially but is a cause of concern environmentally.
The primary manufacturer of perfluorooctanesulfonic acid (PFOS), 3M, began a production phase-out in 2002 in response to concerns expressed by the U.S. Environmental Protection Agency (EPA). Eight other companies agreed to gradually phase out the manufacturing of the chemical by 2015.
By 2014, EPA had listed PFOA and perfluorooctanesulfonates (salts of perfluorooctanesulfonic acid, PFOS) as emergent contaminants:
In 2024 EPA published drinking water regulations for PFOA and five other PFAS.United States Environmental Protection Agency (EPA), Washington, D.C. (April 26, 2024). "PFAS National Primary Drinking Water Regulation." Federal Register,
In 1968, organofluorine content was detected in the blood serum of consumers, and in 1976 it was suggested to be PFOA or a related compound such as PFOS.
In 1999, EPA ordered companies to examine the effects of perfluorinated chemicals after receiving data on the global distribution and toxicity of PFOS. For these reasons, and EPA pressure, in May 2000, 3M announced the phaseout of the production of PFOA, PFOS, and PFOS-related products—the company's best-selling repellent. 3M stated that they would have made the same decision regardless of EPA pressure.
Because of the 3M phaseout, in 2002, DuPont built its own plant in Fayetteville, North Carolina, to manufacture the chemical. The chemical has received attention due to litigation from the PFOA-contaminated community around DuPont's Washington Works facility in Washington, West Virginia, along with EPA focus. In 2004, ChemRisk—an "industry risk assessor" that had been contracted by Dupont, reported that over 1.7 million pounds of C8 had been "dumped, poured and released" into the environment from Dupont's Parkersburg, West Virginia-based Washington Works plant between 1951 and 2003.
Research on PFOA has demonstrated ubiquity, animal-based toxicity, and some associations with human health parameters and potential health effects. Additionally, advances in analytical chemistry in recent years have allowed the routine detection of low- and sub-parts per billion levels of PFOA in a variety of substances. In 2013, Gore-Tex eliminated the use of PFOAs in the manufacture of its weatherproof functional fabrics. Major companies producing PFOA signed with the Global PFOA Stewardship Program with the goal of elimination of PFOA by 2015. Since then it has been eliminated from the production of non-stick materials used in cookware. GenX has been introduced as a replacement for PFOA, but in a 2015 study which tested the effects on rats, GenX caused many of the same health problems as PFOA, but required much higher concentrations. This is because GenX (C3) is a short chain alternative to PFOA. GenX also has a significantly shorter half-life than PFOA so it is not as bio-persistent as PFOA or other long chain perfluorinated chemicals.
Bilott exposed how DuPont had been knowingly polluting water with PFOAs in Parkersburg, West Virginia, since the 1980s. In the 1980s and 1990s, researchers investigated the toxicity of PFOA. Regarding a secret agreement between 3M and the government of Jersey (UK) to not perform group testing of residents and to help 3M avoid a class action, Billott told The Guardian: "I've not seen something like this where there's an agreement to try to help the company against claims by others, Particularly if it's something affecting public health and safety or research."
For his work in the exposure of the contamination, Bilott received several awards including The Right Livelihood Award in 2017. In film, this battle with DuPont has been depicted in the documentary The Devil We Know and the legal thriller Dark Waters.
PFOA is also synthesized by the telomerization represented below, where the telogen is the organoiodine compound and the taxogen is the tetrafluoroethylene. Each step is an addition reaction where the carbon-iodine bond of the telogen is added across the carbon-carbon double bond of the unsaturated taxogen, resulting in the formation of a new telogen.
The product is oxidized by Sulfur trioxide to form PFOA. Since each addition produces a new teleomer, like these form with varying length chains containing an even number of carbon atoms, depending on reaction conditions. Typically, most products within will contain between two and six taxogens (that is, from CF3(CF2)5I to CF3(CF2)13I). After oxidation, distillation is used to separate PFOA from the other perfluorinated carboxylic acids. The telomerization synthesis of PFOA was pioneered by DuPont, and is not well suited to the laboratory. PFOA formed by telomerization is completely linear, in contrast to the mixture of structures formed by ECF.
As a salt, its dominant use is as an emulsion for the emulsion polymerization of fluoropolymers such as PTFE, polyvinylidene fluoride, and . For this use, 3M subsidiary Dyneon has a replacement emulsifer despite DuPont stating PFOA is an "essential processing aid". In the past PFOA was used in the production of Gore-Tex as it is PTFE-based. In PTFE processing, PFOA is in aqueous solution and forms that contain tetrafluoroethylene and the growing polymer. PFOA can be used to stabilize fluoropolymer and fluoroelastomer suspensions before further industrial processing and in ion-pair reversed-phase liquid chromatography it can act as an extraction agent. PFOA also finds uses in electronic products and as an industrial fluorosurfactant.
In a 2009 EPA study of 116 products, purchased between March 2007 and May 2008 and found to contain at least 0.01% fluorine by weight, the concentrations of PFOA were determined. Concentrations shown below range from not detected, or ND, (with the detection limit in parentheses) to 6750 with concentrations in of PFOA per gram of sample (parts per billion) unless stated otherwise.
ND (<1.5) to 462 |
19 to 6750 |
5.4 to 161 |
0.6 to 293 |
3.8 to 438 |
46 to 369 |
7.5 to 44.8 |
477 to 3720 |
0.1 to 2.5 ng/cm2 |
ND (<1.5) to 4640 |
ND (<1.5) to 96.7 |
ND (<1.5) to 3490 |
ND (<1.5) to 4.3 |
However, wildlife has much less PFOA than humans, unlike PFOS and other longer perfluorinated carboxylic acids; in wildlife, PFOA is not as bioaccumulative as longer perfluorinated carboxylic acids. Municipal wastewater and landfill are considered as important sources of PFOA to the environment.
Most industrialized nations have average PFOA blood serum levels ranging from 2 to 8 parts per billion; the highest consumer sub-population identified was in Korea—with about 60 parts per billion. In Peru, Vietnam, and Afghanistan blood serum levels have been recorded to be below one part per billion. In 2003–2004 99.7% of Americans had detectable PFOA in their serum with an average of about 4 parts per billion, and concentrations of PFOA in US serum have declined by 25% in recent years. Despite a decrease in PFOA, the longer perfluorinated carboxylic acid PFNA is increasing in the blood of US consumers. PFAS are also found in paper mill residuals, digestates, composts, and soils. Given the ubiquity of PFAS, and the comparative background levels which may be found in wastewater, biosolids, and leachates, setting requirements near analytical detection limits on these sources may not provide a discernable benefit to protecting public health.
A majority of waste water treatment plants (WWTPs) that have been tested output more PFOA than is input, and this increased output has been attributed to the biodegradation of fluorotelomer alcohols. A current PFOA precursor concern are fluorotelomer-based polymers; fluorotelomer alcohols attached to hydrocarbon backbones via ester linkages may detach and be free to biodegrade to PFOA.
People who lived in the PFOA-contaminated area around DuPont's Washington Works facility were found to have higher levels of PFOA in their blood from drinking water. The highest PFOA levels in drinking water were found in the Little Hocking water system, with an average concentration of 3.55 parts per billion during 2002–2005. Individuals who drank more tap water, ate locally grown fruits and vegetables, or ate local meat, were all associated with having higher PFOA levels. Residents who used water Carbon filtering systems had lower PFOA levels.
In Jersey, UK, 18% of residents of an area were found to have elevated levels of PFOA, downstream from 3M fire retardant tests in weekly fire-service practice from the 1960s to the mid 1990s. Bloodletting is used for these residents at a cost of $4500 per patient. The potatoes of the island were found to contain 10x the EU limit of PFOS.
In 2008 as news stories began to raise concerns about PFOA in microwaved popcorn, Dan Turner, DuPont's global public relations chief, said, "I serve microwave popcorn to my three-year-old." Five years later, journalist Peter Laufer wrote to Turner to ask if his child was still eating microwave popcorn. "I am not going to comment on such a personal inquiry", Turner replied. Dan Turner, LinkedIn, retrieved 9/26/15.
Fluorotelomer coatings are used in fast food wrappers, candy wrappers, and pizza box liners. PAPS, a type of paper fluorotelomer coating, and PFOA precursor, is also used in food contact papers.
Despite DuPont's assertion that "cookware coated with DuPont Teflon non-stick coatings does not contain PFOA", residual PFOA was also detected in finished PTFE products including PTFE cookware (4–75 parts per billion). However, PFOA levels ranged from undetectable (<1.5) to 4.3 parts per billion in a more recent study. Also, non-stick cookware is heated—which should Evaporation PFOA; PTFE products that are not heated, such as PTFE sealant tape, had higher (1800 parts per billion) levels detected. Overall, PTFE cookware is considered an insignificant exposure pathway to PFOA.
The State of New Jersey published drinking water standards for PFOA and PFOS in 2020. A standard for PFNA was published in 2018. This was the first state to publish PFAS standards in the absence of federal regulations. See U.S. state government actions.
In 2018 the State of New York adopted drinking water standards of 10 ppt for PFOA and 10 ppt for PFOS, the most stringent such standards in the United States. The standards apply to public water systems and took effect in 2019 after a public comment period.
Using information gained through a Freedom of Information Act request, in May 2018 it was learned that January 2018 emails between the EPA, the Office of Management and Budget, the Department of Defense, and the Department of Health and Human Services showed an effort to suppress the release of a draft report on the toxicology of PFOS and PFOA done by the Agency for Toxic Substances and Disease Registry. The report found that these chemicals endanger human health at a far lower level than EPA has previously called safe. After media accounts of the effort surfaced, the regional EPA administrator for Colorado denied that EPA had anything to do with suppressing the report. The report was released on June 21, 2018.
The new ATSDR analysis derives provisional Minimal Risk Levels (MRLs) of 3x10−6 mg/kg/day for PFOA and 2x10−6 mg/kg/day for PFOS during intermediate exposure. The European Food Safety Authority opinion sets a provisional tolerable weekly intake (TWI) of 6 x10−6 mg/kg body weight per week for PFOA.
In 2008, PFOA has been described as a member of a group of "classic non-genotoxic carcinogens". However, a provisional German assessment notes that a 2005 study found PFOA to be genotoxic via a peroxisome proliferation pathway that produced oxygen radicals in HepG2 cells, and a 2006 study demonstrated the induction and suppression of a broad range of ; therefore, it states that the indirect Genotoxicity (and thus carcinogenic) potential of PFOA cannot be dismissed. As of November 2023, the International Agency for Research on Cancer (IARC) has classified PFOA as carcinogenic to humans (Group 1) based on "sufficient" evidence for cancer in animals and "strong" mechanistic evidence in exposed humans.
An additional study has shown PFOA to be developmentally toxic, hepatotoxic, immunotoxic, and to have negative effects of thyroid hormone production.
In animals, PFOA is mainly present in the liver, blood, and . PFOA does not accumulate in adipose, unlike traditional organohalogen persistent organic pollutants. In humans, PFOA has an average elimination half-life of about three years. Because of this long half-life, PFOA has the potential to bioaccumulate.
The levels of PFOA exposure in humans vary widely. While an average American might have 3 or 4 parts per billion of PFOA present in their blood serum, individuals occupationally exposed to PFOA have had blood serum levels over 100,000 parts per billion (100 parts per million or 0.01%) recorded. While no amount of PFOA in humans is legally recognized as harmful, DuPont was "not satisfied" with data showing their Chinese workers accumulated an average of about 2,250 parts per billion of PFOA in their blood from a starting average of around 50 parts per billion less than a year prior.
Extrapolated epidemiological data suggests a slight association between PFOA exposure and low birth weight. This was consistent based on blood levels of PFOA metabolites regardless of the geographic residence of subjects. Generally, the findings among human fetuses exposed to the chemical were considerably less drastic than what was seen in mice studies. Because of this, studies linking exposure to low birth weight can be considered inconclusive. PFOA exposure in the Danish general population was not associated with an increased risk of Prostate cancer, Bladder cancer, pancreatic, or liver cancer. Maternal PFOA levels were not associated with an offspring's increased risk of hospitalization due to infectious diseases, behavioral and motor coordination problems, or delays in reaching developmental milestones.
Facial birth defects, an effect observed in rat offspring, occurred with the children of two out of seven female DuPont employees from the Washington Works facility from 1979 to 1981. Bucky Bailey is one of the affected individuals; DuPont, however, does not accept any liability from the toxicity of PFOA. While 3M sent DuPont results from a study that showed birth defects to rats administered PFOA and DuPont moved the women out of the Teflon production unit, subsequent animal testing led DuPont to conclude there was no reproductive risk to women, and they were returned to the production unit. However, data released in March 2009 on the community around DuPont's Washington Works plant showed "a modest, imprecise indication of an elevation in risk ... above the 90th percentile ... based on 12 cases in the uppermost category", which was deemed "suggestive of a possible relationship" between PFOA exposure and birth defects.
On December 13, 2005, DuPont announced a settlement with the EPA in which DuPont would pay US$10.25 million in fines and an additional US$6.25 million for two supplemental environmental projects without any admission of liability.
On September 30, 2008, Chief Judge Joseph R. Goodwin of the United States District Court for the Southern District of West Virginia denied the certification of a class of Parkersburg residents exposed to PFOA from DuPont's facility because they did not "show the common individual injuries needed to certify a class action".Goodwin, C.J. " Rhodes, et al. v. E.I. Du Pont De Nemours and Company" United States District Court for the Southern District of West Virginia. Case Number, 6:06-cv-530 (30 September 2008). Retrieved 12 October 2008. On September 28, 2009, Judge Goodwin dismissed the claims of those residents except for medical monitoring.[3] By 2015, more than three thousand plaintiffs have filed personal-injury lawsuits against DuPont. In 2017, DuPont reached a $670.7 million cash settlement related to 3,550 personal injury lawsuits tied to PFOA contamination of drinking water in the Parkersburg area. Chemours, which was spun off from DuPont in 2015, agreed to pay half the settlement. Both companies denied any wrongdoing.
A source told the Guardian that Jersey needed 3M's permission to proceed with blood tests to avoid 3M punitive measures. "The state got an agreement to do individual blood tests, but not screening, as that could be the first step towards a possible class action lawsuit."
In July 2004, EPA filed a suit against DuPont alleging "widespread contamination" of PFOA near the Parkersburg, West Virginia plant "at levels exceeding the company's community exposure guidelines;" the suit also alleged that "DuPont had—over a 20 year period—repeatedly failed to submit information on adverse effects (in particular, information on liver enzyme alterations and birth defects in offspring of female Parkersburg workers)."
In October 2005, a USFDA study was published revealing PFOA and PFOA precursor chemicals in food contact and PTFE products.
On January 25, 2006, EPA announced a voluntary program with several chemical companies to reduce PFOA and PFOA precursor emissions by the year 2015.
On February 15, 2005, EPA's Science Advisory Board (SAB) voted to recommended that PFOA should be considered a "likely human carcinogen".
On May 26, 2006, EPA's SAB addressed a letter to Administrator Stephen L. Johnson. Three-quarters of advisers thought the stronger "likely to be carcinogenic" descriptor was warranted, in opposition to EPA's own PFOA hazard descriptor of "suggestive evidence of carcinogenicity, but not sufficient to assess human carcinogenic potential".
On November 21, 2006, EPA ordered DuPont to offer alternative drinking water or treatment for public or private water users living near DuPont's Washington Works plant in West Virginia (and in Ohio), if the level of PFOA detected in drinking water is equal to or greater than 0.5 parts per billion. This measure sharply lowered the previous action level of 150 parts per billion that was established in March 2002.
According to a May 23, 2007, Environmental Science & Technology Online article, U.S. Food and Drug Administration research regarding food contact papers as a potential source of PFOA to humans is ongoing.
In November 2007, the Centers for Disease Control and Prevention (CDC) published data on PFOA concentrations comparing 1999–2000 vs. 2003–2004 NHANES samples.
In October 2021 the EPA proposed to designate PFOA and PFOS as hazardous substances in its PFAS Strategic Roadmap.RIN 2050-AH09 EPA. "Addressing PFOA and PFOS in the Environment: Potential Future Regulation Pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act and the Resource Conservation and Recovery Act." Rulemaking Docket EPA-HQ-OLEM-2019-0341 In September 2022 the EPA proposed to designate as hazardous substances under the Superfund Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA).
In 2024 EPA published drinking water regulations for PFOA and five other PFAS.
In 2018 the state published a drinking water standard for PFNA. Public water systems in New Jersey are required to meet a maximum contaminant level (MCL) standard of 13 ppt.
In 2019 New Jersey filed lawsuits against the owners of two plants that had manufactured PFASs (the Chambers Works and the Parlin plant in Sayreville), and two plants that were cited for water pollution from other chemicals. The companies cited are DuPont, Chemours and 3M.
In 2020 the NJDEP set a PFOA standard at 14 ppt and a PFOS standard at 13 ppt.
In January 2018, Michigan established a legally enforceable groundwater cleanup level of 70 ppt for both PFOA and PFOS. Two science advisory committees were also created and joined MPART to "coordinate and review medical and environmental health, PFAS science and develop evidence-based recommendations".
In August 2020, the Michigan Department of Environment, Great Lakes, and Energy adopted stricter drinking water standards in the form of MCLs, lowering acceptable levels from the 2018 enforceable groundwater cleanup levels of 70 ppt to 8 ppt for PFOA and 16 ppt for PFOS and adding MCLs for 5 previously unregulated PFAS compounds PFNA, PFHxA, PFHxS, PFBS, and HFPO-DA.
In the Netherlands, after questions by members of Parliament, the minister of Environment ordered a study into the potential exposure to PFOA of people living in the vicinity of the DuPont factory in Dordrecht. The report was published in March 2016 and concluded that "prior to 2002 residents were exposed to levels of PFOA at which health effects could not be ruled out". As a result of this, the government commissioned several further studies, including blood tests and measurements in drinking water.
PFOA was identified as a PBT substance in the EU in 2013. It was then included in the candidate list of substances of very high concern. In 2017, PFOA, its salts and PFOA-related substances were added to annex XVII (restriction) of the REACH Regulation. Official Journal of the European Union, L 150 , 14 June 2017.
The EU adopted the listing of PFOA in Annex A of the Stockholm Convention with Commission Delegated Regulation (EU) 2020/784 of 8 April 2020 and introduced a limit value of 0,025 mg/kg for PFOA including its salts, and at 1 mg/kg for the individual PFOA-related compounds or a combination of those compounds. They also included some specific exemptions. Among them is a time-bound exemption for PFOA in fire-fighting foam.
|
|