Product Code Database
Example Keywords: android -office $15-122
   » » Wiki: Chromite
Tag Wiki 'Chromite'.
Tag

Chromite is a crystalline composed primarily of iron(II) oxide and chromium(III) oxide compounds. It can be represented by the chemical formula of 24. It is an belonging to the . The element can substitute for in variable amounts as it forms a with magnesiochromite (24). Substitution of the element can also occur, leading to (24). Chromite today is mined particularly to make stainless steel through the production of (), which is an iron-chromium alloy.

Chromite grains are commonly found in large igneous intrusions such as the in South Africa and India. Chromite is iron-black in color with a metallic luster, a dark brown streak and a hardness on the Mohs scale of 5.5.

(1998). 9780471156772, Wiley. .

Properties
Chromite minerals are mainly found in mafic-ultramafic and are also sometimes found in . The chromite minerals occur in layered formations that can be hundreds of kilometres long and a few meters thick. Chromite is also common in and form in association with and minerals.


Crystal structure
The chemical composition of chromite can be represented as FeCr2O4, with the iron in the +2 and the chromium in the +3 oxidation state. , when presented as an , or in massive form, forms as fine granular aggregates. The structure of the can be seen as platy, with breakages along planes of weakness. Chromite can also be presented in a thin section. The grains seen in thin sections are disseminated with crystals that are euhedral to subhedral.

Chromite contains Mg, ferrous iron Fe(II), Al and trace amounts of . Chromite can change into different minerals based on the amounts of each element in the mineral. Chromite is a part of the , which means that it is able to form a complete series with other members in the same group. These include minerals such as chenmingite (FeCr2O4), (FeCr2O4), magnesiochromite (MgCr2O4) and (Fe2+Fe3+2O4). Chenmingite and xieite are polymorphs of chromite while magnesiochromite and magnetite are with chromite.


Crystal size and morphology
Chromite occurs as massive and granular crystals and very rarely as crystals. for this mineral occurs on the {III} plane as described by the spinel law.

Grains of minerals are generally small in size. However, chromite grains up to 3 cm have been found. These grains are seen to crystallize from the liquid of a body where there are low amounts of chromium and oxygen. The large grains are associated with stable conditions seen from the meteorite body.


Reactions
Chromite is an important mineral in helping to determine the conditions that rocks form. It can have reactions with various gases such as and . The reaction between these gases and the solid chromite grains results in the reduction of the chromite and allows for the formation of iron and chromium . There could also be a formation of metal from the interaction with chromite and the gases.

Chromite is seen to form early in the process. This allows for chromite to be resistant to the alteration effects of high temperatures and pressures seen in the series. It is able to progress through the series unaltered. Other minerals with a lower resistance are seen to alter in this series to minerals such as serpentine, and .


Distribution of deposits
Chromite is found as lenses in from the Earth's mantle. It also occurs in layered, intrusive rocks. In addition, it is found in metamorphic rocks such as some . deposits of chromite form as early magmatic differentiates. It is commonly associated with , , and . The vast Bushveld Igneous Complex of is a large layered to body with some layers consisting of 90% chromite, forming the rare rock type (cf. chromite the mineral and chromitite, a rock containing chromite).Guilbert, John M., and Park, Charles F., Jr. (1986) The Geology of Ore Deposits, Freeman, The Stillwater Igneous Complex in also contains significant chromite.

Chromite suitable for commercial mining is found in just a handful of very substantial deposits. There are 2 main types of chromite deposits: deposits and podiform deposits. Stratiform deposits in layered intrusions are the main source of chromite resources and are found in , , , and . Chromite resources from podiform deposits are mainly found in , , and . is the only country that contains notable chromite reserves in both stratiform and podiform deposits.

(2016). 9780128039069


Stratiform deposits
Stratiform deposits are formed as large sheet-like bodies, usually formed in layered to complexes. This type of deposit is used to obtain 98% of the worldwide chromite reserves.

Stratiform deposits are typically seen to be of in age and are found in . The to provinces that these deposits are formed in were likely intruded into continental crust, which may have contained or . The shapes of these intrusions are described as tabular or funnel-shaped. The tabular intrusions were placed in the form of sills with the layering of these intrusions being parallel. Examples of these tabular intrusions can be seen in the Stillwater Igneous Complex and Bird River. The funnel-shaped intrusions are seen to be dipping towards the center of the intrusion. This gives the layers in this intrusion a formation. Examples of this type of intrusion can be seen in the Bushveld Igneous Complex and the .

Chromite can be seen in stratiform deposits as multiple layers which consist of . Thicknesses for these layers range between 1 cm and 1 m. Lateral depths can reach lengths of 70 km. Chromitite is the main rock in these layers, with 50–95% of it being made of chromite and the rest being composed of , , , , and the various alteration products of these minerals. An indication of water in the magma is determined by the presence of brown .


Podiform deposits
Podiform deposits are seen to occur within the sequences. The stratigraphy of the ophiolite sequence is deep-ocean sediments, , sheeted dykes, and .

These deposits are found in ultramafic rocks, most notably in tectonites. It can be seen that the abundance of podiform deposits increase towards the top of the tectonites.

Podiform deposits are irregular in shape. "Pod" is a term given by geologists to express the uncertain morphology of this deposit. This deposit shows foliation that is parallel to the foliation of the host rock. Podiform deposits are described as discordant, subconcordant and concordant. Chromite in podiform deposits form as anhedral grains. The ores seen in this type of deposit have nodular texture and are loosely-packed nodules with a size range of 5–20 mm. Other minerals that are seen in podiform deposits are , , , , , , and .


Health and environmental impacts
Chromium extracted from chromite is used on a large scale in many industries, including metallurgy, electroplating, paints, tanning, and paper production. Environmental contamination with hexavalent chromium is a major health and environmental concern. Chromium is most stable in its (Cr(III)) form, seen in stable compounds such as natural ores. Cr(III) is an essential nutrient, required for and metabolism in animals and humans. In contrast, the second most stable form, chromium (Cr(VI)), is generally produced through human activity and rarely seen in nature (as in ), and is a highly toxic carcinogen that may kill animals and humans if ingested in large doses.

Health effects

When chromite is mined, it is aimed for the production of and produces a chromite of a high chromium to iron ratio. It can also be crushed and processed. Chromite concentrate, when combined with a such as or coke and a high temperature furnace can produce . Ferrochrome is a type of that is an in between chromium and iron. This ferroalloy, as well as chromite /ref>

When chromite ore is exposed to surface conditions, and can occur. The element chromium is most abundant in chromite in the form of trivalent (Cr-III). When chromite is exposed to aboveground conditions, Cr-III can be converted to Cr-VI, which is the hexavalent state of chromium. Cr-VI is produced from Cr-III by means of dry milling or grinding of the ore. This is due to the moistness of the milling process as well as the in which the milling is taking place. A wet environment and a non-oxygenated atmosphere are ideal conditions to produce less Cr-VI, while the opposite is known to create more Cr-VI. Potential Toxic Effects of Chromium, Chromite Mining and Ferrochrome Production : A Literature Review Https://miningwatch.ca/sites/default/files/chromite_review.pdf< /ref>

Production of is observed to emit into the air such as , and , as well as dust with a high concentration of such as , , , and . During high temperature of chromite to produce , Cr-III is converted to Cr-VI. As with chromite ore, Ferrochrome is milled and therefore produces Cr-VI. Cr-VI is therefore introduced into the dust when the is produced. This introduces health risks such as inhalation potential and of toxins into the environment. Human exposure to chromium is ingestion, skin contact, and inhalation. Chromium-III and VI will accumulate in the tissues of humans and animals. The excretion of this type of chromium from the body tends to be very slow which means that elevated concentrations of chromium can be seen decades later in human tissues.

Environmental effects

Chromite mining, chromium, and ferrochrome production can be toxic for the environment. Chromite is necessary when it comes to the production of economic .Das, P.K., Das, B.P. & Dash, P. Chromite mining pollution, environmental impact, toxicity and phytoremediation: a review. Environ Chem Lett Https://doi.org/10.1007/s10311-020-01102-w< /ref>

As a result of leaching of soils and the explicit discharge from industrial activities, of rocks that contain chromium will enter the water column. The route of chromium uptake in plants is still ambiguous, but because it is a nonessential element, chromium will not have a distinct mechanism for that uptake which is independent from chromium speciation. Plant studies have shown that toxic effects on plants from chromium include things such as wilting, narrow leaves, delayed or reduced growth, a decrease in production, damage to root membranes, small root systems, death and many more. Chromium's structure is similar to other essential elements which means that it can impact the mineral nutrition of plants. During industrial activities and production things such as sediment, water, soil, and air all become polluted and contaminated with chromium. Hexavalent chromium has negative impacts towards soil ecology because it decreases soil micro-organism presence, function, and diversity. Chromium concentrations in soil diversify depending on the different compositions of the sediments and rocks that the soil is made from. The chromium present in soil is a mixture of both Cr(VI) and Cr(III). Certain types of chromium such as has the capability to pass into the cells of organisms. Dust particles from industry operations and industrial wastewater contaminate and pollute surface water, groundwater, and soils.

In aquatic environments, chromium could experience things such as dissolution, , , , reduction, and . In aquatic ecosystems chromium in invertebrates, aquatic plants, fish, and algae. These toxic effects will operate differently because things such as sex, size, and the development stage of an organism may vary. Things such as the temperature of the water, its alkalinity, salinity, pH, and other contaminants will also impact these toxic effects on organisms.


Applications
Chromite can be used as a material because it has a high .
(2025). 9783802731587, Vulkan-Verlag. .
The chromium extracted from chromite is used in and alloying for production of corrosion resistant , , and . Chromium is used as a for glass, glazes, and paint, and as an for tanning leather. It is also sometimes used as a .Tables of Gemstone Identification By Roger Dedeyne, Ivo Quintens, p.189 Most shiny car trim is chromium plated. Superalloys that contain chromium allow jet engines to run under high stress, in a chemically oxidizing environment, and in high-temperature situations.


Porcelain tile pigmentation
are often produced with many different colours and . The usual contributor to colour in fast-fired porcelain tiles is black pigment, which is fairly expensive and is synthetic. Natural chromite allows for an inexpensive and inorganic pigmentation alternative to the expensive and allows for the and mechanical properties of the tiles to not be substantially altered or modified when introduced.


Gallery
File:Chromite by petrographic microscope.jpg|Chromite sample under a petrographic microscope in plain polarized light (PPL) File:Chromite calcite uvarovit.jpg|Chromite grains with white grains File:Chromite-pas-63b.jpg|Green of chromium from , File:Chromite-468934.jpg|Large, equant chromite crystals from Hangha, , Eastern Province,


See also
  • Reduction potential
  • Ring of Fire (Northern Ontario)


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time