A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser originated as an acronym for light amplification by stimulated emission of radiation. The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow and the optical amplifier patented by Gordon Gould.
A laser differs from other sources of light in that it emits light that is coherent. Spatial coherence allows a laser to be focused to a tight spot, enabling uses such as optical communication, laser cutting, and lithography. It also allows a laser beam to stay narrow over great distances (collimated light), used in , lidar, and free-space optical communication. Lasers can also have high temporal coherence, which permits them to emit light with a very narrow frequency spectrum. Temporal coherence can also be used to produce of light with a broad spectrum but durations measured in .
Lasers are used in fiber-optic and free-space optical communications, optical disc drives, , , semiconductor chip manufacturing (photolithography, etching), laser surgery and skin treatments, cutting and laser welding materials, military and law enforcement devices for marking targets and measuring range and speed, and in laser lighting displays for entertainment. The laser is regarded as one of the greatest inventions of the 20th century.
Today, all such devices operating at frequencies higher than microwaves (approximately above 300 Hertz) are called lasers (e.g. infrared lasers, ultraviolet lasers, , ), whereas devices operating at microwave or lower Radio frequency are called masers.
The back-formation verb "" is frequently used in the field, meaning "to give off coherent light," especially about the gain medium of a laser; when a laser is operating, it is said to be "". The terms laser and maser are also used for naturally occurring coherent emissions, as in astrophysical maser and atom laser.
A laser that produces light by itself is technically an optical oscillator rather than an optical amplifier as suggested by the acronym.
The underlying physical process creating photons in a laser is the same as in thermal radiation, but the actual emission is not the result of random thermal processes. Instead, the release of a photon is triggered by the nearby passage of another photon. This is called stimulated emission. For this process to work, the passing photon must be similar in energy, and thus wavelength, to the one that could be released by the atom or molecule, and the atom or molecule must be in the suitable excited state.
The photon that is emitted by stimulated emission is identical to the photon that triggered its emission, and both photons can go on to trigger stimulated emission in other atoms, creating the possibility of a chain reaction. For this to happen, many of the atoms or molecules must be in the proper excited state so that the photons can trigger them. In most materials, atoms or molecules drop out of excited states fairly rapidly, making it difficult or impossible to produce a chain reaction. The materials chosen for lasers are the ones that have Metastability, which stay excited for a relatively long time. In Laser science, such a material is called an active laser medium. Combined with an energy source that continues to "pump" energy into the material, it is possible to have enough atoms or molecules in an excited state for a chain reaction to develop.
Lasers are distinguished from other light sources by their coherence. Spatial (or transverse) coherence is typically expressed through the output being a narrow beam, which is Gaussian beam. Laser beams can be focused to very tiny spots, achieving a very high irradiance, or they can have a very low divergence to concentrate their power at a great distance. Temporal (or longitudinal) coherence implies a polarized wave at a single frequency, whose phase is correlated over a relatively great distance (the coherence length) along the beam. Conceptual physics, Paul Hewitt, 2002 A beam produced by a thermal or other incoherent light source has an instantaneous amplitude and phase that vary randomly with respect to time and position, thus having a short coherence length.
Lasers are characterized according to their wavelength in a vacuum. Most "single wavelength" lasers produce radiation in several modes with slightly different wavelengths. Although temporal coherence implies some degree of monochromaticity, some lasers emit a broad spectrum of light or emit different wavelengths of light simultaneously. Certain lasers are not single spatial mode and have light beams that Beam divergence more than is required by the diffraction limit. All such devices are classified as "lasers" based on the method of producing light by stimulated emission. Lasers are employed where light of the required spatial or temporal coherence can not be produced using simpler technologies.
The process of stimulated emission is analogous to that of an audio oscillator with positive feedback which can occur, for example, when the speaker in a public-address system is placed in proximity to the microphone. The screech one hears is audio oscillation at the peak of the gain-frequency curve for the amplifier.
For the gain medium to amplify light, it needs to be supplied with energy in a process called laser pumping. The energy is typically supplied as an electric current or as light at a different wavelength. Pump light may be provided by a flash lamp or by another laser.
The most common type of laser uses feedback from an pair of mirrors on either end of the gain medium. Light bounces back and forth between the mirrors, passing through the gain medium and being amplified each time. Typically one of the two mirrors, the output coupler, is partially transparent. Some of the light escapes through this mirror. Depending on the design of the cavity (whether the mirrors are flat or curved mirror), the light coming out of the laser may spread out or form a narrow light beam. In analogy to electronic oscillators, this device is sometimes called a laser oscillator.
Most practical lasers contain additional elements that affect the properties of the emitted light, such as the polarization, wavelength, and shape of the beam.
An electron in an atom can absorb energy from light () or heat () only if there is a transition between energy levels that match the energy carried by the photon or phonon. For light, this means that any given transition will only absorb one particular wavelength of light. Photons with the correct wavelength can cause an electron to jump from the lower to the higher energy level. The photon is consumed in this process.
When an electron is excited state from one state to that at a higher energy level with energy difference ΔE, it will not stay that way forever. Eventually, a photon will be spontaneously created from the vacuum having energy ΔE. Conserving energy, the electron transitions to a lower energy level that is not occupied, with transitions to different levels having different time constants. This process is called spontaneous emission. Spontaneous emission is a quantum-mechanical effect and a direct physical manifestation of the Heisenberg uncertainty principle. The emitted photon has a random direction, but its wavelength matches the absorption wavelength of the transition. This is the mechanism of fluorescence and thermal emission.
A photon with the correct wavelength to be absorbed by a transition can also cause an electron to drop from the higher to the lower level, emitting a new photon. The emitted photon exactly matches the original photon in wavelength, phase, and direction. This process is called stimulated emission.
The gain medium of a laser is normally a material of controlled purity, size, concentration, and shape, which amplifies the beam by the process of stimulated emission described above. This material can be of any state: gas, liquid, solid, or plasma. The gain medium absorbs pump energy, which raises some electrons into higher energy ("excited state") . Particles can interact with light by either absorbing or emitting photons. Emission can be spontaneous or stimulated. In the latter case, the photon is emitted in the same direction as the light that is passing by. When the number of particles in one excited state exceeds the number of particles in some lower-energy state, population inversion is achieved. In this state, the rate of stimulated emission is larger than the rate of absorption of light in the medium, and therefore the light is amplified. A system with this property is called an optical amplifier. When an optical amplifier is placed inside a resonant optical cavity, one obtains a laser.
For lasing media with extremely high gain, so-called superluminescence, light can be sufficiently amplified in a single pass through the gain medium without requiring a resonator. Although often referred to as a laser (see, for example, nitrogen laser), the light output from such a device lacks the spatial and temporal coherence achievable with lasers. Such a device cannot be described as an oscillator but rather as a high-gain optical amplifier that amplifies its spontaneous emission. The same mechanism describes so-called astrophysical masers/lasers.
The optical resonator is sometimes referred to as an "optical cavity", but this is a misnomer: lasers use open resonators as opposed to the literal cavity that would be employed at microwave frequencies in a maser.
The resonator typically consists of two mirrors between which a coherent beam of light travels in both directions, reflecting on itself so that an average photon will pass through the gain medium repeatedly before it is emitted from the output aperture or lost to diffraction or absorption.
If the gain (amplification) in the medium is larger than the resonator losses, then the power of the recirculating light can rise exponentially. But each stimulated emission event returns an atom from its excited state to the ground state, reducing the gain of the medium. With increasing beam power, the net gain (gain minus loss) reduces to unity and the gain medium is said to be saturated. In a continuous wave (CW) laser, the balance of pump power against gain saturation and cavity losses produces an equilibrium value of the laser power inside the cavity; this equilibrium determines the operating point of the laser. If the applied pump power is too small, the gain will never be sufficient to overcome the cavity losses, and laser light will not be produced. The minimum pump power needed to begin laser action is called the lasing threshold. The gain medium will amplify any photons passing through it, regardless of direction; but only the photons in a spatial mode supported by the resonator will pass more than once through the medium and receive substantial amplification.
In 1963, Roy J. Glauber showed that coherent states are formed from combinations of photon number states, for which he was awarded the Nobel Prize in Physics. A coherent beam of light is formed by single-frequency quantum photon states distributed according to a Poisson distribution. As a result, the arrival rate of photons in a laser beam is described by Poisson statistics.
Many lasers produce a beam that can be approximated as a Gaussian beam; such beams have the minimum divergence possible for a given beam diameter. Some lasers, particularly high-power ones, produce multimode beams, with the often approximated using Hermite–Gaussian or Laguerre-Gaussian functions. Some high-power lasers use a flat-topped profile known as a "tophat beam". Unstable laser resonators (not used in most lasers) produce fractal-shaped beams. Specialized optical systems can produce more complex beam geometries, such as and .
Near the "waist" (or focal region) of a laser beam, it is highly collimated light: the wavefronts are planar, normal to the direction of propagation, with no beam divergence at that point. However, due to diffraction, that can only remain true well within the Rayleigh range. The beam of a single transverse mode (gaussian beam) laser eventually diverges at an angle that varies inversely with the beam diameter, as required by diffraction theory. Thus, the "pencil beam" directly generated by a common helium–neon laser would spread out to a size of perhaps 500 kilometers when shone on the Moon (from the distance of the Earth). On the other hand, the light from a semiconductor laser typically exits the tiny crystal with a large divergence: up to 50°. However even such a divergent beam can be transformed into a similarly collimated beam employing a lens system, as is always included, for instance, in a laser pointer whose light originates from a laser diode. That is possible due to the light being of a single spatial mode. This unique property of laser light, spatial coherence, cannot be replicated using standard light sources (except by discarding most of the light) as can be appreciated by comparing the beam from a flashlight (torch) or spotlight to that of almost any laser.
A laser beam profiler is used to measure the intensity profile, width, and divergence of laser beams.
Diffuse reflection of a laser beam from a matte surface produces a speckle pattern with interesting properties.
For continuous-wave operation, the population inversion of the gain medium needs to be continually replenished by a steady pump source. In some lasing media, this is impossible. In some other lasers, it would require pumping the laser at a very high continuous power level, which would be impractical, or destroying the laser by producing excessive heat. Such lasers cannot be run in CW mode.
In other cases, the application requires the production of pulses having as large an energy as possible. Since the pulse energy is equal to the average power divided by the repetition rate, this goal can sometimes be satisfied by lowering the rate of pulses so that more energy can be built up between pulses. In laser ablation, for example, a small volume of material at the surface of a workpiece can be evaporated if it is heated in a very short time, while supplying the energy gradually would allow for the heat to be absorbed into the bulk of the piece, never attaining a sufficiently high temperature at a particular point.
Other applications rely on the peak pulse power (rather than the energy in the pulse), especially to obtain nonlinear optical effects. For a given pulse energy, this requires creating pulses of the shortest possible duration utilizing techniques such as Q-switching.
The optical bandwidth of a pulse cannot be narrower than the reciprocal of the pulse width. In the case of extremely short pulses, that implies lasing over a considerable bandwidth, quite contrary to the very narrow bandwidths typical of CW lasers. The lasing medium in some dye lasers and vibronic solid-state lasers produces optical gain over a wide bandwidth, making a laser possible that can thus generate pulses of light as short as a few femtoseconds (10−15 s).
Such mode-locked lasers are a most versatile tool for researching processes occurring on extremely short time scales (known as femtosecond physics, femtosecond chemistry and ultrafast science), for maximizing the effect of nonlinear optics in optical materials (e.g. in second-harmonic generation, parametric down-conversion, optical parametric oscillators and the like). Unlike the giant pulse of a Q-switched laser, consecutive pulses from a mode-locked laser are phase-coherent; that is, the pulses (and not just their envelopes) are identical and perfectly periodic. For this reason, and the extremely large peak powers attained by such short pulses, such lasers are invaluable in certain areas of research.
In 1953, Charles H. Townes and graduate students James P. Gordon and Herbert J. Zeiger produced the first microwave amplifier, a device operating on similar principles to the laser, but amplifying microwave radiation rather than infrared or visible radiation. Townes's maser was incapable of continuous output. Meanwhile, in the Soviet Union, Nikolay Basov and Aleksandr Prokhorov were independently working on the quantum oscillator and solved the problem of continuous-output systems by using more than two energy levels. These gain media could release stimulated emissions between an excited state and a lower excited state, not the ground state, facilitating the maintenance of a population inversion. In 1955, Prokhorov and Basov suggested optical pumping of a multi-level system as a method for obtaining the population inversion, later a main method of laser pumping.
Townes reports that several eminent physicistsamong them Niels Bohr, John von Neumann, and the maser violated Heisenberg's uncertainty principle and hence could not work. Others such as Isidor Rabi and Polykarp Kusch expected that it would be impractical and not worth the effort.Townes, Charles H. (1999). How the Laser Happened: Adventures of a Scientist, Oxford University Press, , pp. 69–70. In 1964, Charles H. Townes, Nikolay Basov, and Aleksandr Prokhorov shared the Nobel Prize in Physics, "for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser–laser principle".
coined the acronym LASER, and described the elements required to construct one. Manuscript text: "Some rough calculations on the feasibility / of a LASER: Light Amplification by Stimulated / Emission of Radiation. /
Conceive a tube terminated by optically flat / Sketch / partially reflecting parallel mirrors..."]]
Simultaneously, Columbia University graduate student Gordon Gould was working on a doctoral thesis about the energy levels of excited thallium. Gould and Townes met and talked about radiation emission as a general subject, but not the specific work they were pursuing. Later, in November 1957, Gould noted his ideas for how a "laser" could be made, including using an open resonator (an essential laser-device component). His notebook included a diagram of an optically pumped laser. It also contained the first recorded use of the term "laser," an acronym for "light amplification by stimulated emission of radiation," along with suggestions for potential applications of the coherent light beams described.
In 1958, Bell Labs filed a patent application for Schawlow and Townes's proposed optical maser; and Schawlow and Townes published a paper with their theoretical calculations in the Physical Review. That same year, Prokhorov independently proposed using an open resonator, the first published appearance of this idea.
At a conference in 1959, Gordon Gould first published the acronym "LASER" in the paper The LASER, Light Amplification by Stimulated Emission of Radiation. Gould's intention was that different "-ASER" acronyms should be used for different parts of the spectrum: "XASER" for x-rays, "UVASER" for ultraviolet, "RASER" for radio-wave, etc. Instead, the term "LASER" ended up being used for all devices operating at wavelengths shorter than microwaves.
Gould's notes included possible applications for a laser, such as optical telecommunications, Spectroscopy, interferometry, radar, and nuclear fusion. He continued developing the idea and filed a patent application in April 1959. The United States Patent and Trademark Office (USPTO) denied his application, and awarded a patent to Bell Labs, in 1960. That provoked a twenty-eight-year legal fight over the rights to various laser technologies and applications. Gould won his first patent in 1977 for optically pumped laser amplifiers, yet it was not until 1987 that he won his first significant patent infringement claim. Many aspects of a working laser were patented by different people: the question of just how to assign credit for inventing the laser remains unresolved by historians.Joan Lisa Bromberg, The Laser in America, 1950–1970 (1991), pp. 74–77 online
On May 16, 1960, Theodore H. Maiman operated the first functioning laser at Hughes Research Laboratories, Malibu, California, ahead of several research teams, including those of Townes, at Columbia University, Arthur L. Schawlow, at Bell Labs, and Gould, at the TRG (Technical Research Group) company. Maiman's functional laser used a flashlamp-pumped synthetic ruby crystal to produce red laser light at 694 nanometers wavelength. The device was only capable of pulsed operation, due to its three-level pumping design scheme. Later that year, the physicist Ali Javan, and William R. Bennett Jr., and Donald R. Herriott, constructed the first gas laser, using helium and neon that was capable of continuous operation in the infrared (U.S. Patent 3,149,290); later, Javan received the Albert Einstein World Award of Science in 1993. In 1962, Robert N. Hall demonstrated the first semiconductor laser, which was made of gallium arsenide and emitted in the near-infrared band of the spectrum at 850 nm. Later that year, Nick Holonyak Jr. demonstrated the first semiconductor laser with a visible emission. This first semiconductor laser could only be used in pulsed-beam operation, and when cooled to liquid nitrogen temperatures (77 K). In 1970, Zhores Alferov, in the USSR, and Izuo Hayashi and Morton Panish of Bell Labs also independently developed room-temperature, continual-operation diode lasers, using the heterojunction structure.
Research on improving these aspects of lasers continues to this day.
In 2015, researchers made a white laser, whose light is modulated by a synthetic nanosheet made out of zinc, cadmium, sulfur, and selenium that can emit red, green, and blue light in varying proportions, with each wavelength spanning 191 nm.
In 2017, researchers at the Delft University of Technology demonstrated an AC Josephson junction microwave laser. Since the laser operates in the superconducting regime, it is more stable than other semiconductor-based lasers. The device has the potential for applications in quantum computing. In 2017, researchers at the Technical University of Munich demonstrated the smallest mode locking laser capable of emitting pairs of phase-locked picosecond laser pulses with a repetition frequency up to 200 GHz.
In 2017, researchers from the Physikalisch-Technische Bundesanstalt (PTB), together with US researchers from JILA, a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder, established a new world record by developing an erbium-doped fiber laser with a linewidth of only 10millihertz.
Lasing without maintaining the medium excited into a population inversion was demonstrated in 1992 in sodium gas and again in 1995 in rubidium gas by various international teams. This was accomplished by using an external maser to induce "optical transparency" in the medium by introducing and destructively interfering the ground electron transitions between two paths so that the likelihood for the ground electrons to absorb any energy has been canceled.
The first chemical laser was demonstrated in 1965 by Jerome V. V. Kasper and George C. Pimentel at the University of California, Berkeley. It was a hydrogen chloride laser operating at 3.7 micrometers.
Neodymium is a common dopant in various solid-state laser crystals, including yttrium orthovanadate (), yttrium lithium fluoride () and yttrium aluminium garnet (). All these lasers can produce high powers in the infrared spectrum at 1064 nm. They are used for cutting, welding, and marking of metals and other materials, and also in spectroscopy and for pumping . These lasers are also commonly doubled, tripled or quadrupled in frequency to produce 532 nm (green, visible), 355 nm and 266 nm (ultraviolet) beams, respectively. Frequency-doubled diode-pumped solid-state (DPSS) lasers are used to make bright green laser pointers.
Ytterbium, holmium, thulium, and erbium are other common "dopants" in solid-state lasers. Ytterbium is used in crystals such as Yb:YAG, Yb:KGW, Yb:KYW, Yb:SYS, Yb:BOYS, Yb:CaF2, typically operating around 1020–1050 nm. They are potentially very efficient and high-powered due to a small quantum defect. Extremely high powers in ultrashort pulses can be achieved with Yb:YAG. Holmium-doped YAG crystals emit at 2097 nm and form an efficient laser operating at infrared wavelengths strongly absorbed by water-bearing tissues. The Ho-YAG is usually operated in a pulsed mode and passed through optical fiber surgical devices to resurface joints, remove rot from teeth, vaporize cancers, and pulverize kidney and gall stones.
Titanium-doped sapphire () produces a highly tunable laser infrared laser, commonly used for spectroscopy. It is also notable for use as a mode-locked laser producing of extremely high peak power.
Thermal limitations in solid-state lasers arise from unconverted pump power that heats the medium. This heat, when coupled with a high thermo-optic coefficient (d n/d T) can cause thermal lensing and reduce the quantum efficiency. Diode-pumped thin overcome these issues by having a gain medium that is much thinner than the diameter of the pump beam. This allows for a more uniform temperature in the material. Thin disk lasers have been shown to produce beams of up to one kilowatt.C. Stewen, M. Larionov, and A. Giesen, "Yb:YAG thin disk laser with 1 kW output power", in OSA Trends in Optics and Photonics, Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, ed. (Optical Society of America, Washington, D.C., 2000) pp. 35–41.
Quite often, the fiber laser is designed as a double-clad fiber. This type of fiber consists of a fiber core, an inner cladding, and an outer cladding. The index of the three concentric layers is chosen so that the fiber core acts as a single-mode fiber for the laser emission while the outer cladding acts as a highly multimode core for the pump laser. This lets the pump propagate a large amount of power into and through the active inner core region while still having a high numerical aperture (NA) to have easy launching conditions.
Pump light can be used more efficiently by creating a fiber disk laser, or a stack of such lasers.
Fiber lasers, like other optical media, can suffer from the effects of photodarkening when they are exposed to radiation of certain wavelengths. In particular, this can lead to degradation of the material and loss in laser functionality over time. The exact causes and effects of this phenomenon vary from material to material, although it often involves the formation of color centers.
Commercial emit at wavelengths from 375 nm to 3500 nm. Low to medium power laser diodes are used in , and CD/DVD players. Laser diodes are also frequently used to optically laser pumping other lasers with high efficiency. The highest-power industrial laser diodes, with power of up to 20 kW, are used in industry for cutting and welding. External-cavity semiconductor lasers have a semiconductor active medium in a larger cavity. These devices can generate high power outputs with good beam quality, wavelength-tunable narrow-linewidth radiation, or ultrashort laser pulses.
In 2012, Nichia and OSRAM developed and manufactured commercial high-power green laser diodes (515/520 nm), which compete with traditional diode-pumped solid-state lasers.
Vertical cavity surface-emitting lasers () are semiconductor lasers whose emission direction is perpendicular to the surface of the wafer. VCSEL devices typically have a more circular output beam than conventional laser diodes. As of 2005, only 850 nm VCSELs are widely available, with 1300 nm VCSELs beginning to be commercialized and 1550 nm devices being an area of research. are external-cavity VCSELs. Quantum cascade lasers are semiconductor lasers that have an active transition between energy sub-bands of an electron in a structure containing several .
The development of a silicon laser is important in the field of optical computing. Silicon is the material of choice for integrated circuits, and so electronic and silicon photonic components (such as optical interconnects) could be fabricated on the same chip. Unfortunately, silicon is a difficult lasing material to deal with, since it has certain properties which block lasing. However, recently teams have produced silicon lasers through methods such as fabricating the lasing material from silicon and other semiconductor materials, such as indium(III) phosphide or gallium(III) arsenide, materials that allow coherent light to be produced from silicon. These are called hybrid silicon lasers. Recent developments have also shown the use of monolithically integrated nanowire lasers directly on silicon for optical interconnects, paving the way for chip-level applications. These heterostructure nanowire lasers capable of optical interconnects in silicon are also capable of emitting pairs of phase-locked picosecond pulses with a repetition frequency up to 200 GHz, allowing for on-chip optical signal processing. Another type is a Raman laser, which takes advantage of Raman scattering to produce a laser from materials such as silicon.
Semiconductor quantum dot lasers use as the active laser medium. These lasers exhibit device performance that is closer to gas lasers and avoid some of the disadvantages of traditional semiconductor laser media. Improvements in modulation bandwidth, lasing threshold, relative intensity noise, linewidth enhancement factor and temperature insensitivity have all been observed. The quantum dot active region may also be engineered to operate at different wavelengths by varying dot size and composition. This allows quantum dot lasers to be fabricated to operate at wavelengths previously not possible using semiconductor laser technology.
are dye lasers that use a bubble as the optical resonator. Whispering gallery modes in the bubble produce an output spectrum composed of hundreds of evenly spaced peaks: a frequency comb. The spacing of the whispering gallery modes is directly related to the bubble circumference, allowing bubble lasers to be used as highly sensitive pressure sensors.
Some of the early studies were directed toward short pulses of neutrons exciting the upper isomer state in a solid so the gamma-ray transition could benefit from the line-narrowing of Mössbauer effect. In conjunction, several advantages were expected from two-stage pumping of a three-level system. It was conjectured that the nucleus of an atom embedded in the near field of a laser-driven coherently-oscillating electron cloud would experience a larger dipole field than that of the driving laser. Furthermore, the nonlinearity of the oscillating cloud would produce both spatial and temporal harmonics, so nuclear transitions of higher multipolarity could also be driven at multiples of the laser frequency.
In September 2007, the BBC News reported that there was speculation about the possibility of using positronium annihilation to drive a very powerful gamma ray laser. David Cassidy of the University of California, Riverside proposed that a single such laser could be used to ignite a nuclear fusion reaction, replacing the banks of hundreds of lasers currently employed in inertial confinement fusion experiments.
Space-based pumped by nuclear explosions have also been proposed as antimissile weapons. Such devices would be one-shot weapons.
Living cells have been used to produce laser light. The cells were genetically engineered to produce green fluorescent protein, which served as the laser's gain medium. The cells were then placed between two 20-micrometer-wide mirrors, which acted as the laser cavity. When the cell was illuminated with blue light, it emitted intensely directed green laser light.
The first widely noticeable use of lasers was the supermarket barcode scanner, introduced in 1974. The laserdisc player, introduced in 1978, was the first successful consumer product to include a laser, but the compact disc player was the first laser-equipped device to become common, commercialized in 1982, followed shortly by .
Some other uses are:
In 2004, excluding diode lasers, approximately 131,000 lasers were sold ,with a value of billion. In the same year, approximately 733 million diode lasers, valued at billion, were sold. Global Industrial laser sales in 2023 reached $21.85 billion.
Lasers are used to treat cancer by shrinking or destroying Neoplasm or precancerous growths. They are most commonly used to treat superficial cancers that are on the surface of the body or the lining of internal organs. They are used to treat basal cell skin cancer and the very early stages of others like cervical cancer, penile cancer, vaginal cancer, vulvar cancer, and non-small cell lung cancer. Laser therapy is often combined with other treatments, such as surgery, chemotherapy, or radiation therapy. Laser ablation (LITT), or interstitial laser photocoagulation, uses lasers to treat some cancers using hyperthermia, which uses heat to shrink tumors by damaging or killing cancer cells. Lasers are more precise than traditional surgery methods and cause less damage, pain, bleeding, swelling, and scarring. A disadvantage is that surgeons must acquire specialized training, and thus it will likely be more expensive than other treatments.
Low-level laser therapy (LLLT) is a treatment in which low-power light from lasers or light-emitting diodes (LEDs) is applied to the surface of the body. This is claimed to stimulate healing, relieve pain, and enhance cell function. The effects appear to be limited to specific wavelengths of light. The effectiveness of this form of treatment is still under investigation. Repeated low-level red light therapy may be effective for controlling myopia in children.Jiang M.D., Yu, et al., Effect of Repeated Low-Level Red-Light Therapy for Myopia Control in Children, Ophthalmology, American Academy of Ophthalmology, Volume 129, Issue 5P509–519, May 2022. Several such devices are cleared by the United States Food and Drug Administration (FDA), and low level red light therapy is being tested for treating a range of medical problems including rheumatoid arthritis and oral mucositis.
Hobbyists have also used surplus lasers taken from retired military applications and modified them for holography. Pulsed ruby and YAG lasers work well for this application.
Examples of pulsed systems with high peak power:
Lasers are usually labeled with a safety class number, which identifies how dangerous the laser is:
Infrared lasers with wavelengths longer than about 1.4micrometers are often referred to as "eye-safe", because the cornea tends to absorb light at these wavelengths, protecting the retina from damage. The label "eye-safe" can be misleading, however, as it applies only to relatively low-power continuous wave beams; a high-power or Q-switched laser at these wavelengths can burn the cornea, causing severe eye damage, and even moderate-power lasers can injure the eye.
Lasers can be a hazard to both civil and military aviation, due to the potential to temporarily distract or blind pilots. See Lasers and aviation safety for more on this topic.
Cameras based on charge-coupled devices may be more sensitive to laser damage than biological eyes.
Design
Laser physics
Stimulated emission
Gain medium and cavity
The light emitted
Quantum vs. classical emission processes
Modes of operation
Continuous-wave operation
Pulsed operation
Q-switching
Mode locking
Pulsed pumping
History
Foundations
Maser
Laser
Recent innovations
Types and operating principles
Gas lasers
Chemical lasers
Excimer lasers
Solid-state lasers
Fiber lasers
Photonic crystal lasers
Semiconductor lasers
Dye lasers
Free-electron lasers
Exotic media
Natural lasers
Uses
In medicine
As weapons
Hobbies
Examples by power
+ The continuous or average power required for some uses: CD-ROM drive DVD player or DVD-ROM drive High-speed CD-RW burner Consumer 16× DVD-R burner DVD 24× dual-layer recording Green laser in Holographic Versatile Disc prototype development Output of the majority of commercially available solid-state lasers used for Micromachinery Typical sealed CO2 surgical lasers Typical sealed CO2 lasers used in industrial laser cutting
Safety
The indicated powers are for visible-light, continuous-wave lasers. For pulsed lasers and invisible wavelengths, other power limits apply. People working with class 3B and class 4 lasers can protect their eyes with safety goggles which are designed to absorb light of a particular wavelength.
See also
Further reading
Books
Periodicals
External links
|
|