Hg1− xCd xTe or mercury cadmium telluride (also cadmium mercury telluride, MCT, MerCad Telluride, MerCadTel, MerCaT or CMT) is a chemical compound of cadmium telluride (CdTe) and mercury telluride (HgTe) with a tunable bandgap spanning the shortwave infrared to the very long wave infrared regions.
The amount of cadmium (Cd) in the alloy can be chosen so as to tune the optical absorption of the material to the desired infrared wavelength. CdTe is a semiconductor with a bandgap of approximately at room temperature. HgTe is a semimetal, which means that its bandgap energy is zero. Mixing these two substances allows one to obtain any bandgap between 0 and 1.5 eV.
The intrinsic carrier concentration is given by
Using the relationship , where λ is in μm and Eg. is in electron volts, one can also obtain the cutoff wavelength as a function of x and t:
The Auger 1 minority carrier lifetime for intrinsic (undoped) HgCdTe is given by
The Auger 1 minority carrier lifetime for doped HgCdTe is given by
The Auger 7 minority carrier lifetime for intrinsic HgCdTe is approximately 10 times longer than the Auger 1 minority carrier lifetime:
The Auger 7 minority carrier lifetime for doped HgCdTe is given by
The total contribution of Auger 1 and Auger 7 recombination to the minority carrier lifetime is computed as
HgCdTe is a common material in of Fourier transform infrared spectrometers. This is because of the large spectral range of HgCdTe detectors and also the high quantum efficiency. It is also found in military field, remote sensing and infrared astronomy research. Military technology has depended on HgCdTe for night vision. In particular, the USAF makes extensive use of HgCdTe on all aircraft, and to equip airborne smart bombs. A variety of heat-seeking missiles are also equipped with HgCdTe detectors. HgCdTe detector arrays can also be found at most of the worlds major research including several satellites. Many HgCdTe detectors (such as Hawaii and NICMOS detectors) are named after the astronomical observatories or instruments for which they were originally developed.
The main limitation of LWIR HgCdTe-based detectors is that they need cooling to temperatures near that of liquid nitrogen (77 K), to reduce noise due to thermally excited current carriers (see cooled infrared camera). MWIR HgCdTe cameras can be operated at temperatures accessible to thermoelectric coolers with a small performance penalty. Hence, HgCdTe detectors are relatively heavy compared to and require maintenance. On the other side, HgCdTe enjoys much higher speed of detection (frame rate) and is significantly more sensitive than some of its more economical competitors.
HgCdTe can be used as a heterodyne detector, in which the interference between a local source and returned laser light is detected. In this case it can detect sources such as CO2 lasers. In heterodyne detection mode HgCdTe can be uncooled, although greater sensitivity is achieved by cooling. Photodiodes, photoconductors or photoelectromagnetic (PEM) modes can be used. A bandwidth well in excess of 1 GHz can be achieved with photodiode detectors.
The main competitors of HgCdTe are less sensitive Si-based (see uncooled infrared camera), InSb and photon-counting superconducting tunnel junction (STJ) arrays. Quantum well infrared photodetectors (QWIP), manufactured from III–V semiconductor materials such as GaAs and AlGaAs, are another possible alternative, although their theoretical performance limits are inferior to HgCdTe arrays at comparable temperatures and they require the use of complicated reflection/diffraction gratings to overcome certain polarization exclusion effects which impact array responsivity. In the future, the primary competitor to HgCdTe detectors may emerge in the form of Quantum Dot Infrared Photodetectors (QDIP), based on either a colloidal or type-II superlattice structure. Unique 3-D quantum confinement effects, combined with the unipolar (non-exciton based photoelectric behavior) nature of quantum dots could allow comparable performance to HgCdTe at significantly higher operating temperatures. Initial laboratory work has shown promising results in this regard and QDIPs may be one of the first significant nanotechnology products to emerge.
In HgCdTe, detection occurs when an infrared photon of sufficient energy kicks an electron from the valence band to the conduction band. Such an electron is collected by a suitable external readout integrated circuits (ROIC) and transformed into an electric signal. The physical mating of the HgCdTe detector array to the ROIC is often referred to as a "Staring array".
In contrast, in a bolometer, light heats up a tiny piece of material. The temperature change of the bolometer results in a change in resistance which is measured and transformed into an electric signal.
Mercury zinc telluride has better chemical, thermal, and mechanical stability characteristics than HgCdTe. It has a steeper change of energy gap with mercury composition than HgCdTe, making compositional control harder.
Liquid phase epitaxy (LPE), in which a CdZnTe substrate is lowered and spinning on top of the surface of a slowly cooling liquid HgCdTe melt. This gives the best results in terms of crystalline quality, and is still a common technique of choice for industrial production.
In recent years, molecular beam epitaxy (MBE) has become widespread because of its ability to stack up layers of different alloy composition. This allows simultaneous detection at several wavelengths. Furthermore, MBE, and also MOVPE, allow growth on large area substrates such as CdTe on Si or Ge, whereas LPE does not allow such substrates to be used.
|
|