Hadesarchaea, formerly called the South-African Gold Mine Miscellaneous Euryarchaeal Group, is a class of thermophile microorganisms that have been found in deep mines, hot springs, marine sediments, and other subterranean environments.
The microbes have been found in other marine environments as well. Some of these areas include cold seep systems in the South China Sea. Hadesarchaea has been found to be a dominant member of the archaeal community in the area. These cold seeps contain gas hydrate bearing sediments in which microbes play a major role in biogeochemical cycling. It is believed that Hadesarchaea is involved in the reaction of carbon dioxide with water in this environment. Hadesarchaea have also been found in subseafloor habitats located in the Guaymas Basin and Sonora Margin around the Gulf of California.
In addition to being present in marine sediments, mines, and hot springs, Hadesarchaea has been identified in the Gut microbiota of certain fish species. The freshwater pufferfish ( Tetraodon cutcutia), native to India, Assam, Bihar, and West Bengal, was found to have Hadesarchaea present in their gut microbiome. Hadesarchaea was found to be in the second most abundant in the archaeal community of the freshwater pufferfish. This was found to be similar to community abundance found in the gut of carnivorous Salmon and herbivorous grass carp. While Hadesarchaea are found to be in such high abundance for these environments, it is not completely known how they influence the health and trophic level of these fish.
Hadesarchaea are unique among known archaea in that they can convert carbon monoxide and water to carbon dioxide and oxygen, producing hydrogen as a by-product. From metagenome-assembled genome (MAG) data, Hadesarchaea possess genes associated with Wood-Ljungdahl carbon fixation pathway, methanogenesis and alkane metabolism. Hadesarchaeal genomes have also been reported to contain genes that enable them to metabolize sugars and amino acids in a heterotrophic lifestyle, and perform dissimilatory nitrite reduction to ammonium. Initial research suggests that these organisms are also involved in significant geochemistry processes.
Because of their relatively small genome, it is assumed that the genomes of Hadesarchaea have been subjected to genome streamlining, possibly as a result of nutrient limitation.
|
|