Product Code Database
Example Keywords: the elder -tetris $69-107
   » » Wiki: Hadesarchaea
Tag Wiki 'Hadesarchaea'.
Tag

Hadesarchaea, formerly called the South-African Gold Mine Miscellaneous Euryarchaeal Group, is a class of microorganisms that have been found in deep mines, hot springs, marine sediments, and other subterranean environments.


Nomenclature
These archaea were initially called South-African Gold Mine Miscellaneous Euryarchaeal Group (SAGMEG), after their initial site of discovery. The name Hadesarchaea was proposed by Baker et al. in 2016, a reference to the .


Phylogeny
Previously, Hadesarchaea (or SAGMEG) were only known to exist through their distinctive phylogenetic position in the tree of life. In 2016, scientists using shotgun sequencing were able to assemble several near-full genomes of these archaea. It was shown that the genome of Hadesarchaea is approximately 1.5 Megabase pairs in size, which is about 0.5 Mbp smaller than most archaea. These archaea have not been successfully cultivated in the laboratory, but their metabolic properties have been inferred from the genomic reconstructions. Hadesarchaea may have evolved from a methanogenic ancestor based on the genetic similarity with other methanogenic organisms.


Taxonomy
  • " Persephonarchaeia" corrig. Mwirichia et al. 2016 (MSBL-1)
  • " Hadarchaeia" Chuvochina et al. 2019 "Hadesarchaea" (SAGMEG)
    • " Hadarchaeales" Chuvochina et al. 2019 "Hadesarchaeales"
      • "Cerberiarchaeaceae" Benito Merino et al. 2024
        • " Candidatus " Benito Merino et al. 2024
          • " Ca. C. oleivorans" Benito Merino et al. 2024
        • " Candidatus " Yu et al. 2024
          • " Ca. M. fermentans" Yu et al. 2024
      • "Hadarchaeaceae" Chuvochina et al. 2019
        • " Candidatus " Chuvochina et al. 2019
          • " Ca. H. yellowstonense" Chuvochina et al. 2019
        • " Candidatus " Hua et al. 2019
          • " Ca. H. tengchongensis" Hua et al. 2019
        • " Candidatus Methanourarchaeum" Hua et al. 2019
          • " Ca. M. thermotelluricum" Hua et al. 2019


Habitat and metabolism
These microbes were first discovered in a gold mine in South Africa at a depth of approximately 3 km (2 mi), where they are able to live without oxygen or light. They were later also found in the White Oak River estuary in North Carolina and in Yellowstone National Park's Lower Culex Basin. These areas are approximately 70 °C (158 °F) and highly . Based on phylogenetic marker gene survey, Hadesarchaeota might be present in soils in ancient mining areas in East Harz region, Germany.

The microbes have been found in other marine environments as well. Some of these areas include cold seep systems in the South China Sea. Hadesarchaea has been found to be a dominant member of the archaeal community in the area. These cold seeps contain gas hydrate bearing sediments in which microbes play a major role in biogeochemical cycling. It is believed that Hadesarchaea is involved in the reaction of with water in this environment. Hadesarchaea have also been found in subseafloor habitats located in the and Sonora Margin around the Gulf of California.

In addition to being present in marine sediments, mines, and hot springs, Hadesarchaea has been identified in the of certain fish species. The freshwater pufferfish ( Tetraodon cutcutia), native to India, Assam, Bihar, and , was found to have Hadesarchaea present in their gut microbiome. Hadesarchaea was found to be in the second most abundant in the archaeal community of the freshwater pufferfish. This was found to be similar to community abundance found in the gut of carnivorous and herbivorous . While Hadesarchaea are found to be in such high abundance for these environments, it is not completely known how they influence the health and trophic level of these fish.

Hadesarchaea are unique among known archaea in that they can convert and water to and oxygen, producing hydrogen as a by-product. From metagenome-assembled genome (MAG) data, Hadesarchaea possess genes associated with Wood-Ljungdahl carbon fixation pathway, methanogenesis and alkane metabolism. Hadesarchaeal genomes have also been reported to contain genes that enable them to metabolize sugars and amino acids in a heterotrophic lifestyle, and perform dissimilatory nitrite reduction to ammonium. Initial research suggests that these organisms are also involved in significant processes.

Because of their relatively small genome, it is assumed that the genomes of Hadesarchaea have been subjected to genome streamlining, possibly as a result of nutrient limitation.


See also

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs