Sauropoda (), whose members are known as sauropods (; from + , 'lizard-footed'), is a clade of ('lizard-hipped') . Sauropods had very long necks, long tails, small heads (relative to the rest of their body), and four thick, pillar-like legs. They are notable for the enormous sizes attained by some species, and the group includes the largest animals to have ever lived on land. Well-known genus include Alamosaurus, Apatosaurus, Argentinosaurus, Brachiosaurus, Brontosaurus, Camarasaurus, Diplodocus, Dreadnoughtus, and Mamenchisaurus. blogs.scientificamerican.com tetrapod-zoology 2015-04-24 That Brontosaurus Thing
The oldest known unequivocal sauropod dinosaurs are known from the Early Jurassic. Isanosaurus and Antetonitrus were originally described as Triassic sauropods, but their age, and in the case of Antetonitrus also its sauropod status, were subsequently questioned. Sauropod-like sauropodomorph tracks from the Fleming Fjord Formation (Greenland) might, however, indicate the occurrence of the group in the Late Triassic. By the Late Jurassic (150 million years ago), sauropods had become widespread (especially the and ). By the Late Cretaceous, one group of sauropods, the , had replaced all others and had a near-global distribution. However, as with all other non-avian dinosaurs alive at the time, the titanosaurs died out in the Cretaceous–Paleogene extinction event. Fossilised remains of sauropods have been found on every continent, including Antarctica.
The name Sauropoda was coined by Othniel Charles Marsh in 1878, and is derived from Ancient Greek, meaning "lizard foot". Sauropods are one of the most recognizable groups of dinosaurs, and have become a fixture in popular culture due to their enormousness.
Complete sauropod fossil finds are extremely rare. Many species, especially the largest, are known only from isolated and disarticulated bones. Many near-complete specimens lack heads, tail tips and limbs.
Their body structure did not vary as much as other dinosaurs, perhaps due to size constraints, but they displayed ample variety. Some, like the , possessed tremendously long tails, which they may have been able to whipcracking like a whip as a signal or to deter or injure predators, or to make . Supersaurus, at long, was the longest sauropod known from reasonably complete remains, but others, like the old record holder, Diplodocus, were also extremely long. The holotype (and now lost) vertebra of Amphicoelias fragillimus (now Maraapunisaurus) may have come from an animal long; its vertebral column would have been substantially longer than that of the blue whale. However, research published in 2015 speculated that the size estimates of A. fragillimus may have been highly exaggerated. The longest dinosaur known from reasonable fossils material is probably Argentinosaurus huinculensis with length estimates of according to the most recent researches. However the giant Barosaurus specimen BYU 9024 might have been even larger reaching lengths of . Others, like the Brachiosauridae, were extremely tall, with high shoulders and extremely long necks. The tallest sauropod was the giant Barosaurus specimen at tall. By comparison, the giraffe, the tallest of all living land animals, is only tall.
The best evidence indicates that the most massive were Argentinosaurus (), Mamenchisaurus (), the giant Barosaurus specimen (60-80+ metric tons) and Patagotitan with Puertasaurus (). Meanwhile, 'mega-sauropods' such as Bruhathkayosaurus has long been scrutinized due to controversial debates on its validity, but recent photos re-surfacing in 2022 have legitimized it, allowing for more updated estimates that range between , rivaling the blue whale in size. The weight of Amphicoelias fragillimus was estimated at tons with lengths of up to nearly but 2015 research argued that these estimates were based on a diplodocid rather than the more modern rebbachisaurid, suggesting a much shorter length of with mass between . Additional finds indicate a number of species likely reached or exceeded weights of 40 tons. The largest land animal alive today, the bush elephant, weighs no more than .
Among the smallest sauropods were the primitive Ohmdenosaurus ( long), the dwarf titanosaur Magyarosaurus ( long), and the dwarf Brachiosauridae Europasaurus, which was long as a fully-grown adult. Its small stature was probably the result of insular dwarfism occurring in a population of sauropods isolated on an island of the late Jurassic in what is now the Langenberg area of northern Germany. The diplodocoid sauropod Brachytrachelopan was the shortest member of its group because of its unusually short neck. Unlike other sauropods, whose necks could grow to up to four times the length of their backs, the neck of Brachytrachelopan was shorter than its backbone.
Fossils from perhaps the largest dinosaur ever found were discovered in 2021 in the Neuquén Province of northwest Patagonia, Argentina. It is believed that they are from a titanosaur, which were amongst the largest sauropods.
On or shortly before 29 March 2017 a sauropod footprint about long was found at Walmadany in the Kimberley Region of Western Australia. The report said that it was the biggest known yet. In 2020 Molina-Perez and Larramendi estimated the size of the animal at and 72 tonnes (79.4 short tons) based on the long footprint.
The arrangement of the forefoot bone ( Metacarpus) columns in eusauropods was semi-circular, so sauropod forefoot prints are horseshoe-shaped. Unlike elephants, print evidence shows that sauropods lacked any fleshy padding to back the front feet, making them concave. The only claw visible in most sauropods was the distinctive thumb claw (associated with digit I). Almost all sauropods had such a claw, though what purpose it served is unknown. The claw was largest (as well as tall and laterally flattened) in diplodocids, and very small in brachiosaurids, some of which seem to have lost the claw entirely based on trackway evidence. Titanosaurs may have lost the thumb claw completely (with the exception of early forms, such as Janenschia).
Titanosaurs were most unusual among sauropods, as, across their history as a clade, they lost not just the external claw but also completely lost the digits of the front foot. Advanced titanosaurs had no digits or digit bones, and walked only on horseshoe-shaped "stumps" made up of the columnar metacarpal bones.Apesteguía, S. (2005). "Evolution of the titanosaur metacarpus". Pp. 321-345 in Tidwell, V. and Carpenter, K. (eds.) Thunder-Lizards: The Sauropodomorph Dinosaurs. Indianapolis: Indiana University Press.
Print evidence from Portugal shows that, in at least some sauropods (probably brachiosaurids), the bottom and sides of the forefoot column was likely covered in small, spiny scales, which left score marks in the prints. In titanosaurs, the ends of the metacarpal bones that contacted the ground were unusually broad and squared-off, and some specimens preserve the remains of soft tissue covering this area, suggesting that the front feet were rimmed with some kind of padding in these species.
Matthew Bonnan has shown that sauropod dinosaur long bones grew isometrically: that is, there was little to no change in shape as juvenile sauropods became gigantic adults. Bonnan suggested that this odd scaling pattern (most vertebrates show significant shape changes in long bones associated with increasing weight support) might be related to a stilt-walker principle (suggested by amateur scientist Jim Schmidt) in which the long legs of adult sauropods allowed them to easily cover great distances without changing their overall mechanics.
The bird-like hollowing of sauropod bones was recognized early in the study of these animals, and, in fact, at least one sauropod specimen found in the 19th century ( Ornithopsis) was originally misidentified as a pterosaur (a flying reptile) because of this.Taylor, M.P. (2010). "Sauropod dinosaur research: a historical review". In Richard Moody, Eric Buffetaut, David M. Martill and Darren Naish (eds.), Dinosaurs (and other extinct saurians): a historical perspective. HTML abstract.
It was also noted by D'Emic and his team that the differences between the teeth of the sauropods also indicated a difference in diet. Diplodocus ate plants low to the ground and Camarasaurus browsed leaves from top and middle branches. According to the scientists, the specializing of their diets helped the different herbivorous dinosaurs to coexist.
Sauropods also had a great number of adaptations in their skeletal structure. Some sauropods had as many as 19 cervical vertebrae, whereas almost all mammals are limited to only seven. Additionally, each vertebra was extremely long and had a number of empty spaces in them which would have been filled only with air. An air-sac system connected to the spaces not only lightened the long necks, but effectively increased the airflow through the trachea, helping the creatures to breathe in enough air. By evolving vertebrae consisting of 60% air, the sauropods were able to minimize the amount of dense, heavy bone without sacrificing the ability to take sufficiently large breaths to fuel the entire body with oxygen. According to Kent Stevens, computer-modeled reconstructions of the skeletons made from the vertebrae indicate that sauropod necks were capable of sweeping out large feeding areas without needing to move their bodies, but were unable to be retracted to a position much above the shoulders for exploring the area or reaching higher.
Another proposed function of the sauropods' long necks was essentially a radiator to deal with the extreme amount of heat produced from their large body mass. Considering that the metabolism would have been doing an immense amount of work, it would certainly have generated a large amount of heat as well, and elimination of this excess heat would have been essential for survival.
It has also been proposed that the long necks would have cooled the veins and arteries going to the brain, avoiding excessively heated blood from reaching the head. It was in fact found that the increase in metabolic rate resulting from the sauropods' necks was slightly more than compensated for by the extra surface area from which heat could dissipate.
When sauropods were first discovered, their immense size led many scientists to compare them with modern-day . Most studies in the 19th and early 20th centuries concluded that sauropods were too large to have supported their weight on land, and therefore that they must have been mainly Aquatic animal. Most life restorations of sauropods in art through the first three quarters of the 20th century depicted them fully or partially immersed in water. This early notion was cast in doubt beginning in the 1950s, when a study by Kermack (1951) demonstrated that, if the animal were submerged in several metres of water, the pressure would be enough to fatally collapse the lungs and airway. However, this and other early studies of sauropod ecology were flawed in that they ignored a substantial body of evidence that the bodies of sauropods were heavily permeated with air sacs. In 1878, paleontologist E.D. Cope had even referred to these structures as "floats".
Beginning in the 1970s, the effects of sauropod air sacs on their supposed aquatic lifestyle began to be explored. Paleontologists such as Coombs and Bakker used this, as well as evidence from sedimentology and biomechanics, to show that sauropods were primarily terrestrial animals. In 2004, D.M. Henderson noted that, due to their extensive system of air sacs, sauropods would have been buoyant and would not have been able to submerge their torsos completely below the surface of the water; in other words, they would float, and would not have been in danger of lung collapse due to water pressure when swimming.
Evidence for swimming in sauropods comes from fossil trackways that have occasionally been found to preserve only the forefeet (manus) impressions. Henderson showed that such trackways can be explained by sauropods with long forelimbs (such as ) floating in relatively shallow water deep enough to keep the shorter hind legs free of the bottom, and using the front limbs to punt forward. However, due to their body proportions, floating sauropods would also have been very unstable and maladapted for extended periods in the water. This mode of aquatic locomotion, combined with its instability, led Henderson to refer to sauropods in water as "tipsy punters".
While sauropods could therefore not have been aquatic as historically depicted, there is evidence that they preferred wet and coastal habitats. Sauropod footprints are commonly found following coastlines or crossing floodplains, and sauropod fossils are often found in wet environments or intermingled with fossils of marine organisms. A good example of this would be the massive Jurassic sauropod trackways found in lagoon deposits on Scotland's Skye. Studies published in 2021 suggest sauropods could not inhabit polar regions. This study suggests they were largely confined to tropical areas and had metabolisms that were very different to those of other dinosaurs, perhaps intermediate between mammals and reptiles. New studies published by Taia Wyenberg-henzler in 2022 suggest that sauropods in North America declined due to undetermined reasons in regards to their niches and distribution during the end of the Jurassic and into the latest Cretaceous. Why this is remains unclear, but some similarities in feeding niches between iguanodontians,
In a review of the evidence for various herd types, Myers and Fiorillo attempted to explain why sauropods appear to have often formed segregated herds. Studies of microscopic tooth wear show that juvenile sauropods had diets that differed from their adult counterparts, so herding together would not have been as productive as herding separately, where individual herd members could forage in a coordinated way. The vast size difference between juveniles and adults may also have played a part in the different feeding and herding strategies.
Since the segregation of juveniles and adults must have taken place soon after hatching, and combined with the fact that sauropod hatchlings were most likely precocial, Myers and Fiorillo concluded that species with age-segregated herds would not have exhibited much parental care. On the other hand, scientists who have studied age-mixed sauropod herds suggested that these species may have cared for their young for an extended period before reaching adulthood. A 2014 study suggested that the time from laying the egg to the time of the hatching was likely to have been between 65 and 82 days. Exactly how segregated versus age-mixed herding varied across different groups of sauropods is unknown. Further examples of gregarious behavior will need to be discovered from more sauropod species to detect possible distribution patterns.
Multiple nesting sites discovered in Argentina and India contain 30-400 clutches of fossilized eggs that were found preserved, providing evidence of sauropod maternal care. Researchers suggest that sauropods might have settled in nesting grounds close to volcanic activity for geothermal incubation, in which the mothers keep their eggs warm. This behavior is similar to modern birds and reptiles who follow the same method.A new Argentinean nesting site showing neosauropod dinosaur reproduction in a Cretaceous hydrothermal environment, Nature Communications, Volume: 1, Article number: 32, DOI: doi:10.1038/ncomms1031H. Dhiman et al.. 2023. New Late Cretaceous titanosaur sauropod dinosaur egg clutches from lower Narmada Valley, India: Palaeobiology and taphonomy. PLoS ONE 18 (1): e0278242; doi: 10.1371/journal.pone.0278242Tanaka, Kohei & Zelenitsky, Darla & Therrien, François & Kobayashi, Yoshitsugu. (2018). Nest substrate reflects incubation style in extant archosaurs with implications for dinosaur nesting habits. Scientific Reports. 8. 10.1038/s41598-018-21386-x.
Diplodocids, on the other hand, appear to have been well adapted for rearing up into a tripodal stance. Diplodocids had a center of mass directly over the hips, giving them greater balance on two legs. Diplodocids also had the most mobile necks of sauropods, a well-muscled pelvic girdle, and tail vertebrae with a specialised shape that would allow the tail to bear weight at the point it touched the ground. Mallison concluded that diplodocids were better adapted to rearing than , which do so occasionally in the wild. He also argues that stress fractures in the wild do not occur from everyday behaviour, such as feeding-related activities (contra Rothschild and Molnar).
Whether sauropods' long necks could be used for browsing high trees has been questioned based on calculations suggesting that just pumping blood up to the head in such a posture for long would have used some half of its energy intake. Further, to move blood to such a height—dismissing posited auxiliary hearts in the neck—would require a heart 15 times as large as of a similar-sized whale.
The above have been used to argue that the long neck must instead have been held more or less horizontally, presumed to enable feeding on plants over a wide area with less need to move about, yielding a large energy saving for such a large animal. Reconstructions of the necks of Diplodocus and Apatosaurus have therefore often portrayed them in near-horizontal, so-called "neutral, undeflected posture".
However, research on living animals demonstrates that almost all extant hold the base of their necks sharply flexed when alert, showing that any inference from bones about habitual "neutral postures" is deeply unreliable.Taylor, M.P., Wedel, M.J., and Naish, D. (2009). " Head and neck posture in sauropod dinosaurs inferred from extant animals". Acta Palaeontologica Polonica 54 (2), 2009: 213-220 abstract Museums and TV have dinosaurs' posture all wrong, claim scientists. Guardian, 27 May 2009 Meanwhile, computer modeling of Common ostrich necks has raised doubts over the flexibility needed for stationary grazing.
Sauropod tracks from the Villar del Arzobispo Formation of early Berriasian age in Spain support the gregarious behaviour of the group. The tracks are possibly more similar to Sauropodichnus giganteus than any other ichnogenera, although they have been suggested to be from a basal titanosauriform. The tracks are wide-gauge, and the grouping as close to Sauropodichnus is also supported by the manus-to-pes distance, the morphology of the manus being kidney bean-shaped, and the morphology of the pes being subtriangular. It cannot be identified whether the footprints of the herd were caused by juveniles or adults, because of the lack of previous trackway individual age identification.
Generally, sauropod trackways are divided into three categories based on the distance between opposite limbs: narrow gauge, medium gauge, and wide gauge. The gauge of the trackway can help determine how wide-set the limbs of various sauropods were and how this may have impacted the way they walked. A 2004 study by Day and colleagues found that a general pattern could be found among groups of advanced sauropods, with each sauropod family being characterised by certain trackway gauges. They found that most sauropods other than had narrow-gauge limbs, with strong impressions of the large thumb claw on the forefeet. Medium gauge trackways with claw impressions on the forefeet probably belong to brachiosaurids and other primitive titanosauriformes, which were evolving wider-set limbs but retained their claws. Primitive true titanosaurs also retained their forefoot claw but had evolved fully wide gauge limbs. Wide gauge limbs were retained by advanced titanosaurs, trackways from which show a wide gauge and lack of any claws or digits on the forefeet.
Occasionally, only trackways from the forefeet are found. Falkingham et al. used computer modelling to show that this could be due to the properties of the substrate. These need to be just right to preserve tracks. Differences in hind limb and fore limb surface area, and therefore contact pressure with the substrate, may sometimes lead to only the forefeet trackways being preserved.
Evolving from sauropodomorphs, the sauropods were huge. Their giant size probably resulted from an increased growth rate made possible by tachymetabolic endothermy, a trait which evolved in sauropodomorphs. Once branched into sauropods, sauropodomorphs continued steadily to grow larger, with smaller sauropods, like the Early Jurassic Barapasaurus and Kotasaurus, evolving into even larger forms like the Middle Jurassic Mamenchisaurus and Patagosaurus. Responding to the growth of sauropods, their theropod predators grew also, as shown by an Allosaurus-sized coelophysoid from Germany.
Ibirania, a nanoid Titanosauria fossil from Brazil, suggests that individuals of various genera were susceptible to diseases such as osteomyelitis and parasite infestations. The specimen hails from the late cretaceous São José do Rio Preto Formation, Bauru Group, and was described in the journal Cretaceous Research by Tito Aureliano et al. (2021). Examination of the titanosaur's bones revealed what appear to be parasitic blood worms similar to the prehistoric Paleoleishmania but are 10-100 times larger, that seemed to have caused the osteomyelitis. The fossil is the first known instance of an aggressive case of osteomyelitis being caused by blood worms in an extinct animal.
The first sauropod fossil to be scientifically described was a single tooth known by the non-Linnaean descriptor Rutellum. This fossil was described by Edward Lhuyd in 1699, but was not recognized as a giant prehistoric reptile at the time.Lhuyd, E. (1699). Lithophylacii Britannici Ichnographia, sive lapidium aliorumque fossilium Britannicorum singulari figura insignium. Gleditsch and Weidmann: London. Dinosaurs would not be recognized as a group until over a century later.
Richard Owen published the first modern scientific descriptions of sauropods in 1841, in a book and a paper naming Cardiodon and Cetiosaurus. Cardiodon was known only from two unusual, heart-shaped teeth (from which it got its name), which could not be identified beyond the fact that they came from a previously unknown large reptile. Cetiosaurus was known from slightly better, but still scrappy remains. Owen thought at the time that Cetiosaurus was a giant marine reptile related to modern , hence its name, which means "whale lizard". A year later, when Owen coined the name Dinosauria, he did not include Cetiosaurus and Cardiodon in that group.Owen, R. (1842). "Report on British Fossil Reptiles". Part II. Report of the British Association for the Advancement of Science, Plymouth, England.
In 1850, Gideon Mantell recognized the dinosaurian nature of several bones assigned to Cetiosaurus by Owen. Mantell noticed that the leg bones contained a medullary cavity, a characteristic of land animals. He assigned these specimens to the new genus Pelorosaurus, and grouped it together with the dinosaurs. However, Mantell still did not recognize the relationship to Cetiosaurus.
The next sauropod find to be described and misidentified as something other than a dinosaur were a set of hip vertebrae described by Harry Seeley in 1870. Seeley found that the vertebrae were very lightly constructed for their size and contained openings for air sacs ( pneumatization). Such air sacs were at the time known only in and , and Seeley considered the vertebrae to come from a pterosaur. He named the new genus Ornithopsis, or "bird face" because of this.
When more complete specimens of Cetiosaurus were described by Phillips in 1871, he finally recognized the animal as a dinosaur related to Pelorosaurus.Phillips, J. (1871). Geology of Oxford and the Valley of the Thames. Oxford: Clarendon Press, 523 pp. However, it was not until the description of new, nearly complete sauropod skeletons from the United States (representing Apatosaurus and Camarasaurus) later that year that a complete picture of sauropods emerged. An approximate reconstruction of a complete sauropod skeleton was produced by artist John A. Ryder, hired by paleontologist E.D. Cope, based on the remains of Camarasaurus, though many features were still inaccurate or incomplete according to later finds and biomechanical studies. Also in 1877, Richard Lydekker named another relative of Cetiosaurus, Titanosaurus, based on an isolated vertebra.
In 1878, the most complete sauropod yet was found and described by Othniel Charles Marsh, who named it Diplodocus. With this find, Marsh also created a new group to contain Diplodocus, Cetiosaurus, and their increasing roster of relatives to differentiate them from the other major groups of dinosaurs. Marsh named this group Sauropoda, or "lizard feet".
Proponents of this definition also use the clade name Gravisauria, defined as the most recent ancestor of Tazoudasaurus naimi and Saltasaurus loricatus and all of its descendants for the clade equivalent to Sauropoda as defined by Salgado et al. The clade Gravisauria was appointed by the French people paleontologist Ronan Allain and Moroccan people paleontologist Najat Aquesbi in 2008 when a cladistic analysis of the dinosaur found by Allain, Tazoudasaurus, as the outcome was that the family Vulcanodontidae. The group includes Tazoudasaurus and Vulcanodon, and the sister taxon Eusauropoda, but also certain species such as Antetonitrus, Gongxianosaurus and Isanosaurus that do not belong in Vulcanodontidae but to an even more basic position occupied in Sauropoda. It made sense to have Sauropoda compared to this, more derived group that included Vulcanodontidae and Eusauropoda in a definition: defined as the group formed by the last common ancestor of Tazoudasaurus and Saltasaurus (Bonaparte and Powell, 1980) and all its descendants. Aquesbi mentioned two synapomorphies, shared derived characteristics of Gravisauria: the vertebrae are wider side to side than front to rear and possession of asymmetrical condyles femoris at the bottom of the femur. Those were previously not thought to be Eusauropoda synapomorphies but Allian found these properties also on Tazoudasaurus.Allain, R. and Aquesbi, N. (2008). "Anatomy and phylogenetic relationships of Tazoudasaurus naimi (Dinosauria, Sauropoda) from the late Early Jurassic of Morocco." Geodiversitas, 30(2): 345-424.
Gravisauria split off in the Early Jurassic, around the Pliensbachian and Toarcian, 183 million years ago, and Aquesbi thought that this was part of a much larger revolution in the animal, which includes the disappearance of Plateosauridae, Coelophysoidea and basal Thyreophora, which they attributed to a worldwide mass extinction.
The phylogenetic relationships of the sauropods have largely stabilised in recent years, though there are still some uncertainties, such as the placement of Euhelopus, Haplocanthosaurus, Jobaria and Nemegtosauridae.
Cladogram after an analysis presented by Sander and colleagues in 2011.
Limbs and feet
Air sacs
Armor
Teeth
Necks
Palaeobiology
Ecology
/ref>
Herding and parental care
Rearing stance
Head and neck posture
Trackways and locomotion
Biomechanics and speed
Body size
Size in Neosauropoda
Independent gigantism
Dwarfism in sauropods
Paleopathology and paleoparasitology
History of discovery
Classification
See also
External links
|
|