Glyphosate (IUPAC name: N-(phosphonomethyl)glycine) is a broad-spectrum systemic herbicide and crop desiccant. It is an organophosphorus compound, specifically a phosphonate, which acts by EPSP inhibitor (EPSP). Glyphosate-based herbicides (GBHs) are used to kill , especially annual Forbs and grasses that compete with . Monsanto brought it to market for agricultural use in 1974 under the trade name Roundup. Monsanto's last commercially relevant United States patent expired in 2000.
Farmers quickly adopted glyphosate for agricultural weed control, especially after Monsanto introduced glyphosate-resistant Roundup Ready crops, enabling farmers to kill weeds without killing their crops. In 2007, glyphosate was the most used herbicide in the United States' agricultural sector and the second-most used (after 2,4-D) in home and garden, government and industry, and commercial applications. From the late 1970s to 2016, there was a 100-fold increase in the frequency and volume of application of GBHs worldwide, with further increases expected in the future.
Glyphosate is absorbed through foliage, and minimally through roots, and from there translocated to growing points. It inhibits EPSP synthase, a plant enzyme involved in the synthesis of three aromatic amino acids: tyrosine, tryptophan, and phenylalanine. It is therefore effective only on actively growing plants and is not effective as a pre-emergence herbicide. Crops have been genetically engineered to be tolerant of glyphosate (e.g. Roundup Ready soybean, the first Roundup Ready crop, also created by Monsanto), which allows farmers to use glyphosate as a post-emergence herbicide against weeds.
While glyphosate and formulations such as Roundup have been approved by regulatory bodies worldwide, concerns about their effects on humans and the environment have persisted. A number of regulatory and scholarly reviews have evaluated the relative toxicity of glyphosate as an herbicide. The WHO and FAO Joint committee on pesticide residues issued a report in 2016 stating the use of glyphosate formulations does not necessarily constitute a health risk, giving an acceptable daily intake limit of 1 milligram per kilogram of body weight per day for chronic toxicity.
The consensus among national pesticide regulatory agencies and scientific organizations is that labeled uses of glyphosate have demonstrated no evidence of human carcinogenicity. In March 2015, the World Health Organization's International Agency for Research on Cancer (IARC) classified glyphosate as "probably carcinogenic in humans" (category 2A) based on epidemiological studies, animal studies, and in vitro studies. In contrast, the European Food Safety Authority concluded in November 2015 that "the substance is unlikely to be Genotoxicity (i.e. damaging to DNA) or to pose a threat to humans", later clarifying that while carcinogenic glyphosate-containing formulations may exist, studies that "look solely at the active substance glyphosate do not show this effect". In 2017, the European Chemicals Agency (ECHA) classified glyphosate as causing serious eye damage and as toxic to aquatic life but did not find evidence implicating it as a carcinogen, a mutagen, toxic to reproduction, nor toxic to specific organs.
Glyphosate was independently discovered in the United States at Monsanto in 1970. About 100 derivatives of aminomethylphosphonic acid had been prepared as potential Water softening agents. Two were found to have weak herbicidal activity, and John E. Franz, a chemist at Monsanto, was asked to try to make analogs with stronger herbicidal activity. Glyphosate was the third analog he made. Franz received the National Medal of Technology of the United States in 1987 and the Perkin Medal for Applied Chemistry in 1990 for his discoveries.
Monsanto developed and patented the use of glyphosate to kill weeds in the early 1970s and first brought it to market in 1974 under the Roundup brandname. While its initial patent expired in 1991, Monsanto retained exclusive rights in the United States until its patent on the isopropylamine salt expired in September 2000.
In 2008, scientists at the United States Department of Agriculture Agricultural Research Service (USDA ARS) described glyphosate as a "virtually ideal" herbicide. In 2010 Powles stated: "glyphosate is a one in a 100-year discovery that is as important for reliable global food production as penicillin is for battling disease."
As of April 2017, the Canadian government stated that glyphosate was "the most widely used herbicide in Canada", at which date the product labels were revised to ensure a limit of 20% POEA by weight. Health Canada's Pest Management Regulatory Agency found no risk to humans or the environment at that 20% limit, and that all products registered in Canada at that time were at or below that limit.
The main degradation path for glyphosate is hydrolysis to aminomethylphosphonic acid.
The second uses glycine in place of iminodiacetic acid. This avoids the need for decarboxylation but requires more careful control of stoichiometry, as the primary amine can react with any excess formaldehyde to form bishydroxymethylglycine, which must be hydrolysed during the work-up to give the desired product.
This synthetic approach is responsible for a substantial portion of the production of glyphosate in China, with considerable work having gone into recycling the triethylamine and methanol solvents. Progress has also been made in attempting to eliminate the need for triethylamine altogether.
Glyphosate is an acid molecule, so it is formulated as a salt for packaging and handling. Various salt formulations include isopropylamine, diammonium, monoammonium, or potassium as the counterion. The active ingredient of the Monsanto herbicides is the isopropylamine salt of glyphosate. Another important ingredient in some formulations is the surfactant polyethoxylated tallow amine (POEA). Some brands include more than one salt. Some companies report their product as acid equivalent (ae) of glyphosate acid, or some report it as active ingredient (ai) of glyphosate plus the salt, and others report both. Given that each salt has its own molecular weight, the acid equivalent is a more accurate method of expressing and comparing concentrations.
Adjuvant loading refers to the amount of adjuvant already added to the glyphosate product. Fully loaded products contain all the necessary adjuvants, including surfactant; some contain no adjuvant system, while other products contain only a limited amount of adjuvant (minimal or partial loading) and additional surfactants must be added to the spray tank before application.
Products are supplied most commonly in formulations of 120, 240, 360, 480, and 680 g/L of active ingredient. The most common formulation in agriculture is 360 g/L, either alone or with added cationic surfactants.Alberta Agriculture and Rural Development. April 26, 2006. Quick Guide to Glyphosate Products – Frequently Asked Questions
For formulations, European regulations allow applications of up to for control of perennial weeds such as Elytrigia repens. More commonly, rates of are practiced for control of annual weeds between crops.
Under normal circumstances, EPSP is dephosphorylated to chorismate, an essential precursor for the amino acids mentioned above.Purdue University, Department of Horticulture and Landscape Architecture, Metabolic Plant Physiology Lecture notes, Aromatic amino acid biosynthesis, The shikimate pathway – synthesis of chorismate . These amino acids are used in protein synthesis and to produce secondary metabolites such as , , and naphthoquinones.
X-ray crystallographic studies of glyphosate and EPSPS show that glyphosate functions by occupying the binding site of the phosphoenolpyruvate, mimicking an intermediate state of the ternary enzyme–substrate complex. Glyphosate bound to proteins in the Protein Data Bank Glyphosate inhibits the EPSPS enzymes of diverse species of plants and microbes, although rates vary.
Glyphosate and related herbicides are often used in invasive species eradication and habitat restoration, especially to enhance native plant establishment in prairie ecosystems. The controlled application is usually combined with a selective herbicide and traditional methods of weed eradication such as to achieve an optimal effect.
In many cities, glyphosate is sprayed along the sidewalks and streets, as well as crevices in between pavement where weeds often grow. However, up to 24% of glyphosate applied to hard surfaces can be run off by water. Glyphosate contamination of surface water is attributed to urban and agricultural use. Glyphosate is used to clear and get rid of unwanted aquatic vegetation. Since 1994, glyphosate has been used in aerial spraying in Colombia in coca eradication programs; Colombia announced in May 2015 that by October, it would cease using glyphosate in these programs due to concerns about human toxicity of the chemical.BBC. May 10, 2015. Colombia to ban coca spraying herbicide glyphosate
Glyphosate is also used for crop desiccation to increase harvest yield and uniformity. Glyphosate itself is not a chemical desiccant; rather crop desiccants are so named because application just before harvest kills the crop plants so that the food crop dries from normal environmental conditions ("dry-down") more quickly and evenly. Because glyphosate is systemic, excess residue levels can persist in plants due to incorrect application and this may render the crop unfit for sale. When applied appropriately, it can promote useful effects. In sugarcane, for example, glyphosate application increases sucrose concentration before harvest. In grain crops (wheat, barley, oats), uniformly dried crops do not have to be (swathed and dried) prior to harvest, but can easily be straight-cut and harvested. This saves the farmer time and money, which is important in northern regions where the growing season is short, and it enhances grain storage when the grain has a lower and more uniform moisture content.
In 2023, 91% of corn, 95% of soybeans, and 94% of cotton produced in the United States were from strains that were genetically modified to be tolerant to multiple herbicides, including dicamba, glufosinate, and glyphosate.
The half-life of glyphosate in soil ranges between 2 and 197 days; a typical field half-life of 47 days has been suggested. Soil and climate conditions affect glyphosate's persistence in soil. The median half-life of glyphosate in water varies from a few to 91 days. At a site in Texas, half-life was as little as three days. A site in Iowa had a half-life of 141.9 days. The glyphosate metabolite AMPA has been found in Swedish forest soils up to two years after a glyphosate application. In this case, the persistence of AMPA was attributed to the soil being frozen for most of the year. Glyphosate adsorption to soil, and later release from soil, varies depending on the kind of soil. Glyphosate is generally less persistent in water than in soil, with 12- to 60-day persistence observed in Canadian ponds, although persistence of over a year has been recorded in the sediments of American ponds. The half-life of glyphosate in water is between 12 days and 10 weeks.
Pesticide residue controls carried out by EU Member States in 2016 analysed 6,761 samples of food products for glyphosate residues. 3.6% of the samples contained quantifiable glyphosate residue levels with 19 samples (0.28%) exceeding the European maximum residue levels (MRLs), which included six samples of honey and other apicultural products (MRL=0.05 mg/kg) and eleven samples of buckwheat and other pseudo‐cereals (MRL=0.1 mg/kg). Glyphosate residues below the European MRLs were most frequently found in dry lentils, linseeds, soya beans, dry peas, tea, buckwheat, barley, wheat and rye. In Canada, a survey of 7,955 samples of food found that 42.3% contained detectable quantities of glyphosate and only 0.6% contained a level higher than the Canadian MRL of 0.1 mg/kg for most foods and 4 mg/kg for beans and chickpeas. Of the products that exceeded MRLs, one third were organic products. Health Canada concluded based on the analysis "that there was no long-term health risk to Canadian consumers from exposure to the levels of glyphosate".
In a 2017 risk assessment, the European Chemicals Agency (ECHA) wrote: "There is very limited information on skin irritation in humans. Where skin irritation has been reported, it is unclear whether it is related to glyphosate or co-formulants in glyphosate-containing herbicide formulations." The ECHA concluded that available human data was insufficient to support classification for skin corrosion or irritation. Inhalation is a minor route of exposure, but spray mist may cause oral or nasal discomfort, an unpleasant taste in the mouth, or tingling and irritation in the throat. Eye exposure may lead to mild conjunctivitis. Superficial corneal injury is possible if irrigation is delayed or inadequate.
, the evidence for long-term exposure to glyphosate increasing the risk of human cancer remains inconclusive. There is weak evidence human cancer risk might increase as a result of occupational exposure to large amounts of glyphosate, such as in agricultural work, but no good evidence of such a risk from home use, such as in domestic gardening.
Although some small studies have suggested an association between glyphosate and non-hodgkin lymphoma, subsequent work confirmed the likelihood this work suffered from bias, and the association could not be demonstrated in more robust studies.
A review of unpublished short-term rabbit-feeding studies reported severe toxicity effects at 150 mg/kg/day and "NOAEL" doses ranging from 50 to 200 mg/kg/day. Glyphosate can have carcinogenic effects in nonhuman mammals. These include the induction of positive trends in the incidence of Kidney cancer and haemangiosarcoma in male mice, and increased pancreatic islet-cell adenoma in male rats. In reproductive toxicity studies performed in rats and rabbits, no adverse maternal or offspring effects were seen at doses below 175–293 mg/kg/day.
Large quantities of glyphosate-based herbicides may cause life-threatening in mammals. Evidence also shows that such herbicides cause direct electrophysiological changes in the cardiovascular systems of rats and rabbits.
Polyethoxylated tallow amine (POEA) is a surfactant used in the original Roundup formulation and was commonly used in 2015. The percentage of POEA varies. A 1997 US government report said that Roundup is 15% POEA while Roundup Pro is 14.5%. Since POEA is more toxic to fish and amphibians than glyphosate alone, POEA is not allowed in aquatic formulations.Gary L. Diamond and Patrick R. Durkin February 6, 1997, under contract from the United States Department of Agriculture. Effects of Surfactants on the Toxicity of Glyphosate, with Specific Reference to RODEO As of 2000, at least 58 studies existed on the effects of Roundup on a range of organisms.
Acute toxicity and chronic toxicity are dose-related. Skin exposure to ready-to-use concentrated glyphosate formulations can cause irritation, and photocontact dermatitis has been occasionally reported. These effects are probably due to the preservative benzisothiazolin-3-one. Severe skin burns are very rare. Inhalation is a minor route of exposure, but spray mist may cause oral or nasal discomfort, an unpleasant taste in the mouth, or tingling and irritation in the throat. Eye exposure may lead to mild conjunctivitis. Superficial corneal injury is possible if irrigation is delayed or inadequate. Death has been reported after deliberate overdose. Ingestion of Roundup ranging from 85 to 200 ml (of 41% solution) has resulted in death within hours of ingestion, although it has also been ingested in quantities as large as 500 ml with only mild or moderate symptoms. Adult consumption of more than 85 ml of concentrated product can lead to corrosive esophageal burns and kidney or liver damage. More severe cases cause "respiratory distress, impaired consciousness, pulmonary edema, infiltration on chest X-ray, shock, arrhythmias, renal failure requiring haemodialysis, metabolic acidosis, and hyperkalaemia" and death is often preceded by bradycardia and ventricular arrhythmias. While the surfactants in formulations generally do not increase the toxicity of glyphosate itself, it is likely that they contribute to its acute toxicity.
Some researchers have suggested the toxicity effects of pesticides on amphibians may differ from those of other aquatic fauna because of their lifestyle; amphibians may be more susceptible to the toxic effects of pesticides because they often prefer to breed in shallow, lentic, or ephemeral pools. These habitats do not necessarily constitute formal water-bodies and can contain higher concentrations of pesticide compared to larger water-bodies. Studies in a variety of amphibians have shown the toxicity of GBFs containing POEA to amphibian larvae. These effects include interference with gill morphology and mortality from either the loss of osmotic stability or asphyxiation. At sub-lethal concentrations, exposure to POEA or glyphosate/POEA formulations have been associated with delayed development, accelerated development, reduced size at metamorphosis, developmental malformations of the tail, mouth, eye and head, histological indications of intersex and symptoms of oxidative stress. Glyphosate-based formulations can cause oxidative stress in bullfrog tadpoles.
A 2003 study of various formulations of glyphosate found, "the risk assessments based on estimated and measured concentrations of glyphosate that would result from its use for the control of undesirable plants in wetlands and over-water situations showed that the risk to aquatic organisms is negligible or small at application rates less than 4 kg/ha and only slightly greater at application rates of 8 kg/ha."
A 2013 meta-analysis reviewed the available data related to potential impacts of glyphosate-based herbicides on amphibians. According to the authors, the use of glyphosate-based pesticides cannot be considered the major cause of amphibian decline, the bulk of which occurred prior to the widespread use of glyphosate or in pristine tropical areas with minimal glyphosate exposure. The authors recommended further study of per-species and per-development-stage chronic toxicity, of environmental glyphosate levels, and ongoing analysis of data relevant to determining what if any role glyphosate might be playing in worldwide amphibian decline, and suggest including amphibians in standardized test batteries.
EFSA's decision and the BfR report were criticized in an open letter published by 96 scientists in November 2015 saying that the BfR report failed to adhere to accepted scientific principles of open and transparent procedures. The BfR report included unpublished data, lacked authorship, omitted references, and did not disclose conflict-of-interest information.
In July 2023, EFSA re-evaluated after three years of assessment the putative impact of glyphosate on the health of humans, animals and the environment. As a result, no critical areas of concern were identified that would otherwise prevent glyphosate's registration renewal in the EU.
The BfR responded that IARC reviewed only a selection of what they had reviewed earlier, and argued that other studies, including a cohort study called Agricultural Health Study, do not support the classification. The IARC report did not include unpublished studies, including one completed by the IARC panel leader. The agency's international protocol dictates that only published studies be used in classifications of carcinogenicity, since national regulatory agencies including the EPA have allowed agrochemical corporations to conduct their own unpublished research, which may be biased in support of their profit motives.
In contrast, a 2016 analysis by Christopher Portier, a scientist advising the IARC in the assessment of glyphosate and advocate for its classification as possibly carcinogenic, concluded that in the EFSA's Renewal Assessment Report, "almost no weight is given to studies from the published literature and there is an over-reliance on non-publicly available industry-provided studies using a limited set of assays that define the minimum data necessary for the marketing of a pesticide", arguing that the IARC's evaluation of probably carcinogenic to humans "accurately reflects the results of published scientific literature on glyphosate".
In October 2017, an article in The Times revealed that Portier had received consulting contracts with two law firm associations representing alleged glyphosate cancer victims that included a payment of US$160,000 to Portier. The IARC final report was also found to have changed compared to an interim report, through the removal of text saying certain studies had found glyphosate was not carcinogenic in that study's context, and through strengthening a conclusion of "limited evidence of animal carcinogenicity," to "sufficient evidence of animal carcinogenicity".
In 2017, evidence collected in a lawsuit brought against Monsanto by cancer patients revealed company emails that appeared to show a friendly relationship with a senior EPA official.
Two journalists from Le Monde won the 2018 European Press Prize for a series of articles on the documents, also titled Monsanto Papers. Their reporting described, among other things, Monsanto's lawyers' letters demanding that IARC scientists turn over documents relating to Monograph 112, which contained the IARC finding that glyphosate was a "probable carcinogen"; several of the scientists condemned these letters as intimidating.
Glyphosate was listed as "known to the State of California to cause cancer" in 2017, requiring warning labels under Proposition 65. In February 2018, as part of an ongoing case, an injunction was issued prohibiting California from enforcing carcinogenicity labeling requirements for glyphosate until the case was resolved. The injunction stated that arguments by a US District Court Judge for the Eastern District of California "do not change the fact that the overwhelming majority of agencies that that have examined glyphosate have determined it is not a cancer risk." In August 2019, the EPA also said it no longer allowed labels claiming glyphosate is a carcinogen, as those claims would "not meet the labeling requirements of the Federal Insecticide, Fungicide, and Rodenticide Act" and misinform the public.
According to Ian Heap, a weed specialist, who completed his PhD on resistance to multiple herbicides in annual ryegrass ( Lolium rigidum) in 1988 – the first case of an herbicide-resistant weed in Australia – by 2014 Lolium rigidum was the "world’s worst herbicide-resistant weed" with instances in "12 countries, 11 sites of action, 9 cropping regimens" and affecting "over 2 million hectares."
In response to resistant weeds, farmers are hand-weeding, using tractors to turn over soil between crops, and using other herbicides in addition to glyphosate.
Monsanto scientists have found that some resistant weeds have as many as 160 extra copies of a gene called EPSP synthase, the enzyme glyphosate disrupts.
In 2017 Vandenberg et al. cited a 100-fold increase in the use of glyphosate-based herbicides from 1974 to 2014, the possibility that herbicide mixtures likely have effects that are not predicted by studying glyphosate alone, and reliance of current safety assessments on studies done over 30 years ago. They recommended that current safety standards be updated, writing that the current standards "may fail to protect public health or the environment."
On November 27, 2017, in the EU Council a majority of eighteen member states voted in favor of permitting the use of glyphosate for five more years. A qualified majority of sixteen states representing 65% of EU citizens was required to pass the law. 'EU votes for five more years usage of herbicide glyphosate'. NRC Handelsblad , November 28, 2017. The German Minister of Agriculture, Christian Schmidt, unexpectedly voted in favor while the German coalition government was internally divided on the issue, which usually results in Germany abstaining. 'Talks CDU-SPD under pressure because of herbicide' . NRC Handelsblad, November 28, 2017.
In December 2018, attempts were made to reopen the decision to license the weed-killer. These were condemned by Conservative MEPs, who said the proposal was politically motivated and flew in the face of scientific evidence.
In March 2019, the European Court of Justice (ECJ) ordered the European Food Safety Authority (EFSA) to release all carcinogenicity and toxicity pesticide industry studies on glyphosate to the general public. ‘European Court of Justice orders public release of industry glyphosate studies’, March 7, 2019.
The assessment process for an approval of glyphosate in the European Union was scheduled to begin in December 2019. France, Hungary, the Netherlands and Sweden were to jointly assess the application dossiers of the producers. The draft report of the assessment group was then to be peer-reviewed by the EFSA before the then-current approval expired in December 2022.
The date was subsequently pushed back, partially due to very high interest and input in the participation process, with the European Food Safety Authority (EFSA) even calling it an "unprecedented number". Because the EFSA had to review all these 2400 comments and almost 400 responses, the process was expected to take longer. The created document was under extra review by the specially formed Glyphosate Renewal Group (GRG) and the Assessment Group on Glyphosate (AGG), the panel consisting of the four mentioned member states. With their responses then being scheduled for September 2022, the consultations with member states were supposed to be held by the very end of 2022. This would allow to finish the final assessment by mid-2023 and pass it on to further legislature to decide.
In November 2023, glyphosate received a 10 year renewed authorization for use in the EU from the European Commission.
In June 2015, the French Ecology Minister asked nurseries and garden centers to halt over-the-counter sales of glyphosate in the form of Monsanto's Roundup. This was a nonbinding request and all sales of glyphosate remained legal in France until 2022, when it was planned to ban the substance for home gardening. However, subsequently the French parliament decided not to impose a definitive date for such a ban. French parliament does not vote for a date to terminate glyphosate: Rejet à l’Assemblée de l’inscription dans la loi de la date de sortie du glyphosate In January 2019, "the sale, distribution, and use of Roundup 360 was banned" in France. Exemptions for many farmers were later implemented, and a curb of its use by 80% for 2021 is projected.
In March 2019, the Austrian state of Carinthia outlawed the private use of glyphosate in residential areas while the commercial application of the herbicide is still permitted for farmers. The use of glyphosate by public authorities and road maintenance crews was already halted a number of years prior to the current ban by local authorities. "Kärnten verbietet ab 28. März Glyphosat für Private" (in German). Die Presse. Retrieved April 29, 2019.
In June 2019, Deutsche Bahn and Swiss Federal Railways announced that glyphosate and other commonly used herbicides for weed eradication along railway tracks will be phased out by 2025, while more environmentally sound methods for vegetation control are implemented.Briner M (July 2018). Schluss mit Glyphosat: SBB wollen Unkraut anders vernichten Aargauer Zeitung (in German). Retrieved June 26, 2019.Schlesiger Ch (June 2019). Deutsche Bahn will künftig auf Glyphosat verzichten Wirtschaftswoche (in German). Retrieved June 26, 2019.
In July 2019, the parliament voted to ban glyphosate in Austria. Nationalrat stimmt für Glyphosatverbot, Austrian parliament votes to forbid Glyphosphat & water is a public good necessary for the existence of a human, orf.at, July 2, 2019 However, the ban was never brought into effect due to a legal defect rendering it unable to be Promulgation.
In September 2019, the German Environment Ministry announced that the use of glyphosate would be banned from the end of 2023. The use of glyphosate-based herbicides would be reduced starting from 2020. As of April 2024, a partial ban was reported to be in effect.
A full ban on the use of glyphosate in Luxembourg entered into force on January 1, 2022. The ban was annulled by the Administrative Court of Luxembourg in April 2023.
In the United States, the state of Minnesota preempts local laws that attempt to ban glyphosate. In 2015 there was an attempt to pass legislation at the state level that would repeal that preemption. As of January 2018, glyphosate is not banned at either the federal or state level in the US. However, numerous local governments in various states have enacted restrictions or bans on the use of glyphosate in their respective jurisdictions. In addition, the state of California attempted to enforce a requirement for a Prop 65 carcinogen warning label on glyphosate containers, but was Injunction from doing so by a federal court.
In May 2015, the President of Sri Lanka banned the use and import of glyphosate, effective immediately.Staff, Colombo Page. May 22, 2015 Sri Lankan President orders to ban import of glyphosate with immediate effect Sarina Locke for the Australian Broadcasting Corporation. Updated May 27, 2015 Toxicologist critical of 'dodgy science' in glyphosate bans However, in May 2018 the Sri Lankan government decided to re-authorize its use in the plantation sector. The ban was fully revoked in August 2022.
In May 2015, Bermuda blocked importation on all new orders of glyphosate-based herbicides for a temporary suspension awaiting outcomes of research. In 2016, the Bermudian government banned all glyphosate concentrates with a strength of over 2 per cent.
In May 2015, Colombia announced that it would stop using glyphosate by October 2015 in the destruction of illegal plantations of coca, the raw ingredient for cocaine. Farmers have complained that the aerial fumigation has destroyed entire fields of coffee and other legal produce. The glyphosate ban in Colombia was subsequently lifted.
In April 2019, Vietnam's Ministry of Agriculture and Rural Development banned the use of glyphosate throughout the country.
In August 2020, Mexico President Andrés Manuel López Obrador announced that glyphosate would be gradually phased out of use in Mexico by late 2024. However in March 2024, the Mexican government postponed the ban, and did not set a new date for its implementation.
Thailand's National Hazardous Substances Committee decided to ban the use of glyphosate in October 2019Reuters (October 25, 2019). U.S. protests Thailand's chemical ban would hurt crop exports but reversed the decision in November 2019.
After a court ruling in 2018, glyphosate was temporarily banned in Brazil. This decision was later overturned, causing major criticism by the federal agency of health (Anvisa). This comes, as the latest evaluations declared glyphosate as noncarcinogenic. Since all carcinogenic agrichemicals are automatically banned in the country, this allowed the continuous use.
In New Zealand, glyphosate is an approved herbicide for killing weeds, with the most popular brand being Roundup. Genetically modified crops designed to resist glyphosate are absent in New Zealand. Crops applied with glyphosate must be regulated under the HSNO Act 1996 and ACVM Act 1997. Legal status for glyphosate use in New Zealand is approved for commercial and personal use. In 2021, exports of New Zealand honey were found to contain traces of glyphosate, causing some concern to Japanese importers.
The US politician Robert F. Kennedy Jr. has incorporated glyphosate into his anti-vaccination rhetoric, falsely claiming that both glyphosate and vaccines may be contributing to the American obesity epidemic. Stephanie Seneff has also falsely claimed that it may have a role in autism and in worsening concussion.
|
|