Product Code Database
Example Keywords: netbooks -shirt $79-164
barcode-scavenger
   » » Wiki: Diol
Tag Wiki 'Diol'.
Tag

A diol is a chemical compound containing two ( groups).. An aliphatic diol may also be called a glycol.. This pairing of is pervasive, and many subcategories have been identified. They are used as of , making them essential in synthesis of organic chemistry.

The most common industrial diol is . Examples of diols in which the hydroxyl functional groups are more widely separated include 1,4-butanediol and propylene-1,3-diol, or beta propylene glycol, .


Synthesis of classes of diols

Geminal diols
A has two hydroxyl groups bonded to the same atom. These species arise by hydration of the carbonyl compounds. The hydration is usually unfavorable, but a notable exception is which, in water, exists in equilibrium with H2C(OH)2. Another example is (F3C)2C(OH)2, the hydrated form of hexafluoroacetone. Many gem-diols undergo further condensation to give dimeric and oligomeric derivatives. This reaction applies to and related .


Vicinal diols
In a vicinal diol, the two hydroxyl groups occupy vicinal positions, that is, they are attached to adjacent atoms. These compounds are called glycols (though the term can be used more widely). Examples include ethane-1,2-diol or ethylene glycol HO−(CH2)2−OH, a common ingredient of products. Another example is propane-1,2-diol, or alpha propylene glycol, HO−CH2−CH(OH)−CH3, used in the food and medicine industry, as well as a relatively non-poisonous antifreeze product.

On commercial scales, the main route to vicinal diols is the hydrolysis of . The epoxides are prepared by epoxidation of the alkene. An example in the synthesis of trans-cyclohexanedioltrans-cyclohexanediol Organic Syntheses, Coll. Vol. 3, p. 217 (1955); Vol. 28, p.35 ( 1948) http://www.orgsynth.org/orgsyn/pdfs/CV3P0217.pdf. or by : Advantages of Synthesizing trans-1,2-Cyclohexanediol in a Continuous Flow Microreactor over a Standard Glass Apparatus Andreas Hartung, Mark A. Keane, and Arno Kraft J. Org. Chem. 2007, 72, 10235–10238 .

For academic research and pharmaceutical areas, vicinal diols are often produced from the of , usually with dilute potassium permanganate or Osmium tetroxide.

(2023). 9781951693985, Rice University.
can similarly be used to oxidize alkenes to vicinal diols. The chemical reaction called Sharpless asymmetric dihydroxylation can be used to produce chiral diols from alkenes using an osmate and a chiral . Another method is the Woodward cis-hydroxylation (cis diol) and the related Prévost reaction (anti diol), which both use iodine and the silver salt of a carboxylic acid.

Other routes to vic-diols are the hydrogenation of and the reaction.


1,3-Diols
1,3-Diols are often prepared industrially by aldol condensation of ketones with . You can use many different starting materials to produce syn- or anti-1,3-diols. The resulting carbonyl is reduced using the Cannizzaro reaction or by catalytic :
RC(O)CH3 + CH2O → RC(O)CH2CH2OH
RC(O)CH2CH2OH + H2 → RCH(OH)CH2CH2OH
2,2-Disubstituted propane-1,3-diols are prepared in this way. Examples include 2-methyl-2-propyl-1,3-propanediol and .

1,3-Diols can be prepared by hydration of α,β-unsaturated ketones and aldehydes. The resulting keto-alcohol is hydrogenated. Another route involves the of epoxides followed by hydrogenation of the aldehyde. This method has been used for 1,3-propanediol from .

More specialized routes to 1,3-diols involves the reaction between an and , the . 1,3-diols can be produced diastereoselectively from the corresponding β-hydroxy using the Evans–Saksena, Narasaka–Prasad or Evans–Tishchenko reduction protocols.

1,3-Diols are described as syn or anti depending on the relative stereochemistries of the carbon atoms bearing the hydroxyl functional groups. is a that contains both syn and anti 1,3-diols.


1,4-, 1,5-, and longer diols
Diols where the hydroxyl groups are separated by several carbon centers are generally prepared by hydrogenation of diesters of the corresponding dicarboxylic acids:
(CH2)n(CO2R)2 + 4 H2 → (CH2)n(CH2OH)2 + 2 H2O + 2 ROH
1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and are important precursors to .


Reactions
From the industrial perspective, the dominant reactions of the diols is in the production of and .


General diols
Diols react as alcohols, by and formation.

Diols such as are used as co- in reactions forming including some and . A different monomer with two identical functional groups, such as a or dioic acid is required to continue the process of polymerization through repeated esterification processes.

A diol can be converted to cyclic ether by using an acid catalyst, this is . Firstly, it involves protonation of the hydroxyl group. Then, followed by intramolecular nucleophilic substitution, the second hydroxyl group attacks the electron deficient carbon. Provided that there are enough carbon atoms that the angle strain is not too much, a can be formed.

1,2-diols and 1,3-diols can be protected using a protecting group. Protecting groups are used so that the functional group does not react to future reactions. Benzylidene groups are used to protect 1,3-diols. There are extremely useful in biochemistry as shown below of a carbohydrate derivative being protected. Diols can also be used to protect carbonyl groups. They are commonly used and are quite efficient at synthesizing cyclic acetals. These protect the carbonyl groups from reacting from any further synthesis until it is necessary to remove them. The reaction below depicts a diol being used to protect a carbonyl using zirconium tetrachloride. Diols can also be converted to employing the Fétizon oxidation reaction.


Vicinal diols
In , the C−C bond in a vicinal diol is cleaved with formation of ketone or aldehyde functional groups. See .


Geminal diols
In general, organic geminal diols readily dehydrate to form a .


See also
  • Alcohols, chemical compounds with at least one group
  • , chemical compounds with three hydroxyl groups
  • , chemical compounds with multiple hydroxyl groups
  • Glycol nucleic acid (GNA)

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
2s Time