Dextromethorphan, sold under the brand name Robitussin among others, is a cough suppressant used in many cough and Common cold medicines. In 2022, the US Food and Drug Administration (FDA) approved the combination dextromethorphan/bupropion to serve as a rapid-acting antidepressant in people with major depressive disorder.
It is in the morphinan class of medications with sedative, dissociative, and stimulant properties (at lower doses). Dextromethorphan does not have a significant affinity for the mu-opioid receptor activity typical of morphinan compounds and exerts its therapeutic effects through several other receptors. In its pure form, dextromethorphan occurs as a white powder.
When exceeding approved dosages, dextromethorphan acts as a dissociative. It has multiple mechanisms of action, including actions as a nonselective serotonin reuptake inhibitor and a sigma-1 receptor agonist. Dextromethorphan and its major metabolite, dextrorphan, also block the NMDA receptor at high doses, which produces effects similar to other dissociative anesthetics such as ketamine, nitrous oxide, and phencyclidine.
It was patented in 1949 and approved for medical use in 1953. In 2022, the combination with promethazine was the 260th most commonly prescribed medication in the United States, with more than 1million prescriptions. In 2022, the combination with brompheniramine and pseudoephedrine was the 265th most commonly prescribed medication in the United States, with more than 1million prescriptions.
A rare side effect is respiratory depression.
Combining alcohol with dextromethorphan significantly increases the risk of overdose, according to the NIAAA.
Compounds in grapefruit affect a number of drugs, including dextromethorphan, through the inhibition of the cytochrome P450 system in the liver, and can lead to excessive accumulation of the drug which both increases and prolongs effects. Grapefruit and grapefruit juices (especially white grapefruit juice, but also including other citrus fruits such as Bergamot orange and lime, as well as a number of noncitrus fruits) generally are recommended to be avoided while using dextromethorphan and numerous other medications.
Dextromethorphan has been found to possess the following actions (<1 μM) using rat tissues:
Dextromethorphan is a prodrug of dextrorphan, which is the actual mediator of most of its dissociative effects through acting as a more potent NMDA receptor antagonist than dextromethorphan itself. What role, if any, (+)-3-methoxymorphinan, dextromethorphan's other major metabolite, plays in its effects is not entirely clear.
At therapeutic doses, dextromethorphan acts centrally (meaning that it acts on the brain) as opposed to locally (on the respiratory tract). It elevates the threshold for coughing, without inhibiting activity. Dextromethorphan is rapidly absorbed from the gastrointestinal tract and converted into the active metabolite dextrorphan in the liver by the cytochrome P450 enzyme CYP2D6. The average dose necessary for effective antitussive therapy is between 10 and 45 mg, depending on the individual. The International Society for the Study of Cough recommends "an adequate first dose of medication is 60 mg in the adult and repeat dosing should be infrequent rather than recommended."
Dextromethorphan has an elimination half-life of approximately 4 hours in individuals with an extensive metabolizer phenotype; this is increased to approximately 13 hours when dextromethorphan is given in combination with quinidine. The duration of action after oral administration is about three to eight hours for dextromethorphan hydrobromide, and 10 to 12 hours for dextromethorphan polistirex. Around one in 10 of the Caucasian population has little or no CYP2D6 enzyme activity, leading to long-lived high drug levels.
A major metabolic catalyst involved is the cytochrome P450 enzyme known as 2D6, or CYP2D6. A significant portion of the population has a functional deficiency in this enzyme and are known as poor CYP2D6 metabolizers. O-demethylation of dextromethorphan to dextrorphan contributes to at least 80% of the dextrorphan formed during dextromethorphan metabolism. As CYP2D6 is a major metabolic pathway in the inactivation of dextromethorphan, the duration of action and effects of dextromethorphan can be increased by as much as three times in such poor metabolizers. In one study on 252 Americans, 84.3% were found to be "fast" (extensive) metabolizers, 6.8% to be "intermediate" metabolizers, and 8.8% were "slow" metabolizers of dextromethorphan. A number of for CYP2D6 are known, including several completely inactive variants. The distribution of alleles is uneven amongst ethnic groups.
A large number of medications are potent inhibitors of CYP2D6. Some types of medications known to inhibit CYP2D6 include certain SSRIs and tricyclic , some antipsychotics, and the commonly available antihistamine diphenhydramine. Therefore, the potential for interactions exists between dextromethorphan and medications that inhibit this enzyme, particularly in slow metabolizers.
Dextromethorphan is also metabolized by CYP3A4. N-demethylation is primarily accomplished by CYP3A4, contributing to at least 90% of the MEM formed as a primary metabolite of dextromethorphan.
A number of other CYP enzymes are implicated as minor pathways of dextromethorphan metabolism. CYP2D6 is more effective than CYP3A4 at N-demethylation of dextromethorphan, but since the average individual has a much lower CYP2D6 content in the liver compared to CYP3A4, most N-demethylation of dextromethorphan is catalyzed by CYP3A4.
This includes the synthesis by means of ionic liquids.
Overall, it is a cost-effective method with moderate reaction conditions that is easy to handle and suitable for industrial production.
This process has also been patented by Roche.
During the 1960s and 1970s, dextromethorphan became available in an over-the-counter tablet form by the brand name Romilar. In 1973, Romilar was taken off the shelves after a burst in sales because of frequent misuse. A few years later, products with an unpleasant taste were introduced (such as Robitussin, Vicks-44, and Dextrotussion), but later the same manufacturers began producing products with a better taste. The advent of widespread internet access in the 1990s allowed users to rapidly disseminate information about dextromethorphan, and online discussion groups formed around use and acquisition of the drug. As early as 1996, dextromethorphan hydrobromide powder could be purchased in bulk from online retailers, allowing users to avoid consuming dextromethorphan in syrup preparations.
FDA panels considered moving dextromethorphan to prescription status due to its potential for abuse, but voted against the recommendation in September 2010, citing lack of evidence that making it prescription-only would curb abuse.Nordqvist C. FDA panel: cough meds should stay over the counter. 14 September 2010. Medical News Today Website. http://www.medicalnewstoday.com/articles/201227.php. Accessed 18 May 2020. Some states have restricted the sale of dextromethorphan to adults or put other restrictions on its purchase in place, similar to those for pseudoephedrine. As of 1 January 2012, dextromethorphan is prohibited for sale to minors in the State of California and in the State of Oregon as of 1 January 2018, except with a doctor's prescription. Several other states have also begun regulating sales of dextromethorphan to minors.
In Indonesia, the National Agency of Drug and Food Control (BPOM-RI) prohibited single-component dextromethorphan drug sales with or without prescription. Indonesia is the only country that makes single-component dextromethorphan illegal over the counter and by prescription and violators may be prosecuted by law. National Anti-Narcotics Agency (BNN RI) has threatened to revoke pharmacies' and drug stores' licenses if they still stock dextromethorphan, and will notify the police for criminal prosecution. As a result of this regulation, 130 medications have been withdrawn from the market, but those containing multicomponent dextromethorphan can still be sold over the counter.
It may produce distortions of the visual field, feelings of dissociation, distorted bodily perception, excitement, and a loss of sense of time. Some users report stimulant-like euphoria, particularly in response to music. Dextromethorphan usually provides its recreational effects in a non-linear fashion, so that they are experienced in significantly varied stages. These stages are commonly referred to as "plateaus". These plateaus are numbered from one to four, with the first having the mildest effects to fourth being the most intense. Each plateau is said to come with different related effects and experiences.
The first plateau is said to induce music euphoria and mild stimulation, likened to that of MDMA. The second plateau is likened to a state of being on moderate amounts of alcohol and cannabis at the same time, featuring euphoria, sedation and minor hallucinations. The third plateau induces a significant dissociative state which can often cause anxiety in users. Reaching the fourth plateau is said to cause extreme sedation and a significant hallucinatory state as well as complete dissociation from reality. Teenagers tend to have a higher likelihood to use dextromethorphan-related drugs as they are easier to access; youths and young adults with psychiatric disorders are at risk of abusing the drug.
Neurotoxicity
Dependence and withdrawal
Interactions
Pharmacology
Pharmacodynamics
+ Dextromethorphan and metabolite Values are Ki (nM), unless otherwise noted. The smaller the value, the more strongly the drug binds to the site.
Pharmacokinetics
Metabolism
Chemistry
Synthesis
Racemate separation
Traditional synthesis
Grewe's cyclization
Improved Grewe's cyclization
History
Society and culture
Marketing
Recreational use
Research
External links
|
|