Ceratosaurs are members of the clade Ceratosauria, a group of defined as all sharing a more recent common ancestor with Ceratosaurus than with birds. The oldest known ceratosaur, Saltriovenator, dates to the earliest part of the Jurassic, around 199 million years ago. Ceratosauria includes three major clades: Ceratosauridae, Noasauridae, and Abelisauridae, found primarily (though not exclusively) in the Southern Hemisphere. Originally, Ceratosauria included the above dinosaurs plus the Late Triassic to Early Jurassic Coelophysoidea and Dilophosauridae, implying a much earlier divergence of ceratosaurs from other theropods. However, most recent studies have shown that coelophysoids and dilophosaurids do not form a clade with other ceratosaurs, and are excluded from this group.
Ceratosauria derives its names from the type species, Ceratosaurus, described by O.C. Marsh in 1884. A moderately large predator from the Late Jurassic, Ceratosaurus nasicornis, was the first ceratosaur to be discovered. Ceratosaurs are generally moderately large in size, with some exceptions like the larger Carnotaurus and the significantly smaller noasaurs. The major defining characteristics of Ceratosauria include a robust skull with increased ornamentation or height and a shortening of the arms. Both of these characteristics are generally accentuated in later members of the group, such as the Abelisauridae, whereas more basal species such as C. nasicornis appear more similar to other basal Theropoda. The highly fragmented nature of the ceratosaur fossil record means that the characteristics, relationships, and early history of Ceratosauria remain mysterious and highly debated.
The idea of the Ceratosauria would be contested by Marsh's rival, Edward Drinker Cope. Cope argued that the taxon was invalid.
Ceratosauria's fortune changed in 1986 when Jacques Gauthier, in an attempt to clarify the evolution of birds, grouped the majority of theropods into either Ceratosauria or Tetanurae. In Ceratosauria, he placed the ceratosaurs and Coelophysoidea. Gauthier's paper brought Ceratosauria's use back in vogue, and by the early 1990s, Abelisauridae had also been included under Ceratosauria. The triumvirate model of ceratosaurs, coelophysoids, and abelisaurids would go unchallenged until the early 2000s. Beginning at the turn of the millennium, a large number of paleontologists began excluding coelophysoids from Ceratosauria. This view is now widely held thanks to several similarities between Ceratosauria and Tetanurae not found in coelophysoids.
Currently, most paleontologists agree that Ceratosauria contains a slightly more exclusive clade, Neoceratosauria, which contains the groups Ceratosauridae and Abelisauroidea, with some variance as to which taxa are placed into basal polytomy. Abelisauroidea is further divided into the Abelisauridae and Noasauridae, with Abelisauridae, including Carnotaurinae. Recently, Rauhut and Carrano have placed Elaphrosaurinae inside Noasauridae while simultaneously moving the previous noasaurs into Noasaurinae. Into their new Noasauridae, they have uniquely included Deltadromeus and Limusaurus.
It is difficult to discern possible Synapomorphy of Ceratosauridae from autapomorphy of Ceratosaurus because the remains of the related Genyodectes are so fragmentary; e.g. Ceratosaurus is different from other ceratosaurians by the very prominent horn on its snout; Genyodectes, however, was not found with a complete skull; whether it had a horn is unknown, so it cannot establish that the horn was a shared derived feature of the group. However, due to the shared similarities between the teeth of the two genera, synapomorphies have been recognized in the teeth. The synapomorphies that do exist include: overlap of the second and third premaxillary alveoli in palatal view, largest crown in subadults/adults higher than six centimeters, subquadrangular mesial denticles at two-thirds of the crown in lateral teeth. Currently the only generally-recognized ceratosaurid species outside the genus Ceratosaurus is Genyodectes from the Cretaceous or Patagonia. The taxa Eoabelisaurus and Ostafrikasaurus are also probable ceratosaurs, but it is unknown if they belong to Ceratosauridae. Delcourt (2018) defined Ceratosauridae as "the most inclusive clade containing Ceratosaurus nasicornis but not Carnotaurus sastrei". Abelisauroidea is a diverse superfamily of ceratosaurians and the sister taxon of Ceratosauridae. It is typically regarded as a Cretaceous group, though the earliest abelisauridae remains are known from the Middle Jurassic of Argentina (classified as the species Eoabelisaurus mefi) and possibly Madagascar (fragmentary remains of an unnamed species). Possible Abelisauridae remains (an isolated left tibia, right femur, and right tibia) were also discovered in Late Jurassic Tendaguru Beds in Tanzania.
Abelisauroids flourished in the Southern Hemisphere during the Cretaceous period, but their origins can be traced back to at least the Middle Jurassic, when they had a more global distribution (the earliest known abelisauroid remains come from and deposits dated to about 170 million years ago). By the Cretaceous period, abelisauroids had apparently become extinct in Asia and North America, possibly due to competition from Tyrannosauroidea. However, advanced abelisauroids of the family Abelisauridae persisted in the southern continents until the Cretaceous–Paleogene extinction event million years ago.Martín D. Ezcurra, M.D. and Agnolín, F.L. (2012). "An abelisauroid dinosaur from the Middle Jurassic of Laurasia and its implications on theropod palaeobiogeography and evolution." Proceedings of the Geologists' Association, (advance online publication).
In an assessment of the phylogenetic position of Eoabelisaurus, the analysis found it as the most basal member of the Abelisauridae. Abelisaurid synapomorphies include the laterally covered lacrimal antorbital fossa, broad cervical prespinal fossae, anteroposteriorly short anterior caudal neural spines, absence of a ventral groove in the anterior caudals, presence of rudimentary centrodiapophyseal laminae in the anterior mid-caudals, reduced distal ginglymus in the manual phalanges, and the presence of a flexor depression in the pedal . Alternative phylogenetic placements of Eoabelisaurus are significantly suboptimal, except for a slightly more basal position. Noasaurids had longer arms than their relatives the abelisaurids, whose arms were tiny and diminished. Although by no means as large or specialized as the arms of advanced bird-like theropods, Noasauridae arms were nevertheless capable of movement and use, possibly even for hunting in large-clawed genera such as Noasaurus. Some genera such as Limusaurus did have somewhat reduced arms and hands, but far from the extent that Abelisauridae acquired. Noasauridae were also nimble and lightly built, with feet showing adaptations for running such as a long central foot bone. Noasaurids varied in size, from the small Velocisaurus under long, to much larger genera such as Elaphrosaurus and Deltadromeus, which were more than in length. The oldest known ceratosaur currently described is Saltriovenator zanellai which is dated to the Early Sinemurian, 199-197 Ma. The origin of Ceratosauria could have been in Northern Pangea where Saltriovenator, its close relative Berberosaurus, and Carmelopodus footprints have been found.
The following family tree illustrates a synthesis of the relationships of the major theropod groups based on various studies conducted in the 2010s and demonstrates the position of Ceratosauria within theropods.
The following cladogram shows the internal relationships within Ceratosauria following an analysis by Diego Pol and Oliver W. M. Rauhut, 2012.
A different conclusion was reached in a 2017 paper on Limusaurus ontogeny. Unlike other analyses, Noasauridae was placed more basal than Ceratosaurus, with the latter being within Abelisauridae by definition. This was later expanded on in a 2018 paper on ceratosaur paleobiology, which named a new clade Etrigansauria, which contained the families Abelisauridae and Ceratosauridae. The following cladogram is a consensus tree of the latest phylogenies shown in the paper.
There are two known types of Ceratosaurus teeth: one with longitudinal ridges and the other with veined Tooth enamel. Both types of teeth have crowns with a teardrop-shaped cross section and carinae running up the middle. The cross section of the tooth's base depends on the position of the tooth in the mouth with front teeth having less symmetric cross sections.
Complete have been described only for the most advanced abelisauridae (such as Carnotaurus and Aucasaurus), making the establishment of defining features of the skeleton for the family as a whole more difficult. However, most are known from at least some skull bones, so known shared features come mainly from the skull. Many abelisaurid skull features are shared with carcharodontosaurids. These shared features, along with the fact that Abelisauridae seem to have replaced Carcharodontosauridae in South America, has led to suggestions that the two groups were related. Noasaurids were considered to be distinctive abelisauroids with a peculiar "sickle claw" on the second toe of the foot, convergently developed with that of . Among Noasauridae, the Argentinean genera Noasaurus (Later Cretaceous) and Ligabueino (Early Cretaceous) are known from incomplete specimens, including disarticulated non-ungual phalanges and in Noasaurus, a claw. A detailed overview of these elements indicates that the supposed raptorial claw of the second pedal digit actually belongs to the first or second finger of the manus, and the putative pedal non-ungual phalanges or both genera also pertain to the manus.
Abelisauridae in particular had great success in Gondwana, particularly in the Cretaceous. Some Gondwanan and Laurasian specimens have recently been found and dated to Late Jurassic, and possibly even the Middle Jurassic, greatly extending the abelisaurid timeline. Some paleontologists have postulated that a large desert may have kept abelisaurids locked in southern Gondwana until the late Jurassic. Whether correlation or causation, it has been largely observed that late Cretaceous ceratosaurs were found less in areas dominated by basal Tetanurae (Africa) or Coelurosauria (North America and Asia).
Others have postulated its skull was built for scavenging. The debate over the eating habits of ceratosaurs is quite active, particularly recently with the increase in abelisaur discoveries. Using three methods, namely a cladistic analysis performed on a dentition-based data matrix, and discriminant and cluster analyses conducted on a large dataset of theropod teeth measurements, three dental morphotypes which are confidently referred to abelisaurid theropods are identifiable. Whether the morphotypes represent different abelisaurid subclades or different positional entities within the jaw of the same abelisaurid species, is unknown. Such an identification, nevertheless, provides additional evidence of abelisaurids feeding on sauropod carcasses.
Studies of Majungasaurus indicate that it was a much slower-growing dinosaur than other theropods, taking nearly 20 years to reach adult size. Similar studies on other abelisaurid genera indicate that this slow maturation may have been a common trait to the whole of Abelisauridae. Noasauridae are Late Cretaceous noasaurids known exclusively from southern continents and islands such as South America, Madagascar, and India. Noasauridae were lightly built Theropoda, with small skulls and long necks and legs. If Limusaurus is any indication, adult elaphrosaurines were completely toothless, and their mouths were probably edged with a horny beak. It is likely that Limusaurus and other elaphrosaurines were primarily herbivorous as adults, due to mature Limusaurus specimens preserving and chemical signatures resembling those of herbivorous .
Most abelisauroid ceratosaurs were found in Madagascar, Asia, or sometimes in Africa. Abelisauridae thrived during the Cretaceous period on the ancient southern supercontinent of Gondwana, and today their fossil remains are found on the modern continents of Africa and South America, as well as on the Indian subcontinent and the island of Madagascar. In Madagascar, Majungasaurus was discovered by French Paleontology Charles Depéret. Majungasaurus was the most common abelisauroid which we know. In South America, many abelisauroids such as Skorpiovenator, Quilmesaurus, Aucasaurus, Ilokelesia, and Pycnonemosaurus are known. Kurupi itaata represents the first formally named vertebrate of the Marília Formation (Bauru Group, Bauru Basin) and one of the few theropod records for the Maastrichtian of the Bauru Basin. Its abelisaurid affinities are well established based on the anatomy of the pelvis and anterior Caudate nucleus ; however, closer relationships with other abelisaurids are still unclear. The specimens provide new information on abelisauroids, which are still poorly known in the Brazilian fossil record, and on the distribution of this group of theropod dinosaurs in South America. These discoveries indicate that abelisauroids were the most common large predatory dinosaurs where they lived.
|
|