Cystic fibrosis transmembrane conductance regulator ( CFTR) is a membrane protein and anion channel in vertebrates that is encoded by the CFTR gene.
Geneticist Lap-Chee Tsui and his team identified the CFTR gene in 1989 as the gene linked with CF (cystic fibrosis).
The CFTR gene codes for an ABC transporter-class ion channel protein that conducts chloride and bicarbonate ions across epithelial . Mutations of the CFTR gene affecting anion channel function lead to dysregulation of epithelial lining fluid (mucus) transport in the lung, pancreas and other organs, resulting in cystic fibrosis. Complications include thickened mucus in the lungs with frequent respiratory infections, and pancreatic insufficiency giving rise to malnutrition and diabetes. These conditions lead to chronic disability and reduced life expectancy. In male patients, the progressive obstruction and destruction of the developing vas deferens (spermatic cord) and epididymis appear to result from abnormal intraluminal secretions, causing congenital absence of the vas deferens and male infertility, and found associated with an imbalance of Fatty acid.
In the airways of the lung, CFTR is most highly expressed by rare specialized cells called pulmonary ionocytes. In the skin, CFTR is strongly expressed in the sebaceous and eccrine sweat glands. In the eccrine glands, CFTR is located on the apical membrane of the epithelial cells that make up the duct of these sweat glands.
Normally, the protein allows movement of chloride, bicarbonate and thiocyanate (with a negative charge) out of an epithelial cell into the airway surface liquid and mucus. Positively charged sodium ions follow passively, increasing the total electrolyte concentration in the mucus, resulting in the movement of water out of the cell via osmosis.
In epithelial cells with motile cilia lining the bronchus and the oviduct, CFTR is located on the apical cell membrane but not on cilia. In contrast, ENaC (Epithelial sodium channel) is located along the entire length of the cilia.
In , defective CFTR results in reduced transport of sodium chloride and sodium thiocyanate in the resorptive duct and therefore saltier sweat. This is the basis of a clinically important sweat test for cystic fibrosis often used diagnostically with genetic screening.
Each individual inherits two copies of the CFTR (cystic fibrosis transmembrane conductance regulator) gene. However, some of the inherited copies have been altered. So far, the CFTR gene has been associated with over 700 distinct mutations. An individual with CF inherits two defective copies of the CFTR gene. These mutations might be heterozygous, meaning they include two different mutations, and homozygous, meaning they involve the same mutation. Delta F508 is the most common mutation, accounting for more than 70% of all mutations. Those who are homozygous for Delta F508 are commonly affected by pancreatic insufficiency.
The CFTR gene has been used in animals as a nuclear DNA phylogenetic marker. Large genomic sequences of this gene have been used to explore the phylogeny of the major groups of mammals, and confirmed the grouping of placental orders into four major clades: Xenarthra, Afrotheria, Laurasiatheria, and Euarchonta plus Glires.
Drug discovery for therapeutics to address CF in all patients is complicated due to a large number of disease-causing mutations. Ideally, a library of cell lines and cell-based assays corresponding to all mutants is required to screen for broadly-active drug candidates. Cell engineering methods including fluorogenic oligonucleotide signaling probes may be used to detect and isolate clonal cell lines for each mutant.
Mutations consist of replacements, duplications, deletions or shortenings in the CFTR gene. This may result in proteins that may not function, work less effectively, are more quickly degraded, or are present in inadequate numbers.
It has been hypothesized that mutations in the CFTR gene may confer a selective advantage to heterozygous individuals. Cells expressing a mutant form of the CFTR protein are resistant to invasion by the Salmonella typhi bacterium, the agent of typhoid fever, and mice carrying a single copy of mutant CFTR are resistant to diarrhea caused by cholera toxin.
The most common mutations that cause cystic fibrosis and pancreatic insufficiency in humans are:
CF-causing |
CF-causing |
CF-causing |
CF-causing |
Varying clinical consequence |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
Varying clinical consequence |
CF-causing |
CF-causing |
CF-causing |
Varying clinical consequence |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
Non CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
CF-causing |
Varying clinical consequence |
CF-causing |
CF-causing |
CF-causing |
Non CF-causing |
CF-causing |
Having a homozygous pair of genes with the ΔF508 mutation prevents the CFTR protein from assuming its normal position in the cell membrane. This causes increased water retention in cells, corresponding dehydration of the extracellular space, and an associated cascade of effects on various parts of the body. These effects include: thicker in the epithelia of afflicted organs; obstruction of narrow respiratory airways as a result of thicker mucus and inhibition of the free movement of muco cilia; congenital absence of the vas deferens due to increased mucus thickness during fetal development; pancreatic insufficiency due to blockage of the pancreatic duct with mucus; and increased risk of respiratory infection due to build-up of thick, nutrient-rich mucus where bacteria thrive. These are the symptoms of cystic fibrosis, a genetic disorder; however, ΔF508 is not the only mutation that causes this disorder.
Being a heterozygous genetic carrier (having a single copy of ΔF508) results in decreased water loss during diarrhea because malfunctioning or absent CFTR proteins cannot maintain stable ion gradients across cell membranes. Typical nucleotide-binding-up of both Cl− and Na+ ions inside affected cells, creating a tonicity solution outside the cells and causing water to diffuse into the cells by osmosis. Several studies indicate that heterozygous carriers are at increased risk for various symptoms. For example, it has been shown that heterozygosity for cystic fibrosis is associated with increased airway reactivity, and heterozygotes may be at risk for poor pulmonary function. Heterozygotes with wheeze have been shown to be at higher risk for poor pulmonary function or development and progression of chronic obstructive lung disease. One gene for cystic fibrosis is sufficient to produce mild lung abnormalities even in the absence of infection.
Cystic fibrosis ΔF508 heterozygotes may be overrepresented among individuals with asthma and may have poorer lung function than non-carriers. Carriers of a single CF mutation have a higher prevalence of chronic rhinosinusitis than the general population. Approximately 50% of cystic fibrosis cases in Europe are due to homozygous ΔF508 mutations (this varies widely by region), ECFS Annual Report: What It Means to the UK Cystic Fibrosis Trust while the allele frequency of ΔF508 is about 70%. The remaining cases are caused by over 1,500 other mutations, including R117H, 1717-1G>A, and 2789+56G>A. These mutations, when combined with each other or even a single copy of ΔF508, may cause CF symptoms. The genotype is not strongly correlated with severity of the CF, though specific symptoms have been linked to certain mutations.
CFTRs consist of five domains including two trans-membrane domains, each linked to a nucleotide-binding domain. CFTR also contains another domain called the regulatory domain. Other members of the ABC transporter superfamily are involved in the uptake of nutrients in prokaryotes, or in the export of a variety of substrates in eukaryotes. ABC transporters have evolved to transduce the free energy of ATP hydrolysis to the uphill movement of substrates across the cell membrane. They have two main conformations, one where the cargo binding site is facing the cytosol or inward facing (ATP free), and one where it is outward facing (ATP bound). ATP binds to each nucleotide-binding domain, which results in the subsequent NBD dimerization, leading to the rearrangement of the transmembrane helices. This changes the accessibility of the cargo binding site from an inward-facing position to an outward facing one. ATP binding, and the hydrolysis that follows, drives the alternative exposure of the cargo binding site, ensuring a unidirectional transport of cargo against an electrochemical gradient. In CFTR, alternating between an inward-facing conformation to an outward-facing one results in channel gating. In particular, NBD dimerization (favored by ATP binding) is coupled to transition to an outward-facing conformation in which an open transmembrane pathway for anions is formed. Subsequent hydrolysis (at the canonical active site, site 2, including Walker motifs of NBD2) destabilizes the NBD dimer and favors return to the inward-facing conformation, in which the anion permeation pathway is closed off.
It is inhibited by the anti-diarrhoea drug crofelemer.
The combination vanzacaftor/tezacaftor/deutivacaftor (brand name Alyftrek) was approved for medical use in the United States in December 2024.
|
|