Brassinosteroids (BRs or less commonly BS) are a class of polyhydroxysteroids that have been recognized as a sixth class of plant hormones and may have utility as anticancer drugs for treating endocrine-responsive cancers by inducing apoptosis of cancer cells and inhibiting cancerous growth. These brassinosteroids were first explored during the 1970s when Mitchell et al. reported promotion in stem elongation and cell division by the treatment of organic extracts of rapeseed ( Brassica napus) pollen. Brassinolide was the first brassinosteroid to be isolated in 1979, when pollen from Brassica napus was shown to promote stem elongation and cell divisions, and the biologically active molecule was isolated. The yield of brassinosteroids from 230 kg of Brassica napus pollen was only 10 mg. Since their discovery, over 70 BR compounds have been isolated from plants.
Extract from the plant Lychnis viscaria contains a relatively high amount of Brassinosteroids. Lychnis viscaria increases the disease resistance of surrounding plants.
24-Epibrassinolide (EBL), a brassinosteroid isolated from Aegle marmelos Correa (Rutaceae), was further evaluated for the antigenotoxicity against maleic hydrazide (MH)-induced genotoxicity in Allium cepa chromosomal aberration assay. It was shown that the percentage of chromosomal aberrations induced by maleic hydrazide (0.01%) declined significantly with 24-epibrassinolide treatment.
BRs have been reported to counteract both abiotic and biotic stress in plants. Application of brassinosteroids to Cucumber was demonstrated to increase the metabolism and removal of pesticides, which could be beneficial for reducing the human ingestion of residual pesticides from non-organically grown vegetables.
BRs have also been reported to have a variety of effects when applied to rice seeds (Oryza sativa.). Seeds treated with BRs were shown to reduce the growth inhibitory effect of salt stress. When the developed plants fresh weight was analyzed the treated seeds outperformed plants grown on saline and non-saline medium however when the dry weight was analyzed BR treated seeds only outperformed untreated plants that were grown on saline medium. When dealing with tomatoes ( Lycopersicon esculentum) under salt stress the concentration of chlorophyll a and chlorophyll b were decreased and thus pigmentation was decreased as well. BR treated rice seeds considerably restored the pigment level in plants that were grown on saline medium when compared to non-treated plants under the same conditions.
BR application has demonstrated efficacy against Phytophthora infestans, mildew on cucumber, plant virus, and various others.
BR could also help bridge the gap of the consumers' health concerns and the producers need for growth. A major benefit of using BR is that it does not interfere with the environment because they act in a natural way. Since it is a “plant strengthening substance” and it is natural, BR application would be more favorable than pesticides and does not contribute to the co-evolution of pests.
In Germany, extract from the plant is allowed for use as a "plant strengthening substance."
|
|