Product Code Database
Example Keywords: sweater -ps3 $17-100
barcode-scavenger
   » » Wiki: Hornwort
Tag Wiki 'Hornwort'.
Tag

Hornworts are a group of non-vascular (land plants) constituting the division Anthocerotophyta (). The common name refers to the elongated horn-like structure, which is the . As in and , hornworts have a -dominant life cycle, in which cells of the plant carry only a single set of genetic information; the flattened, green plant body of a hornwort is the stage of the plant.

Hornworts may be found worldwide, though they tend to grow only in places that are damp or humid. Some species grow in large numbers as tiny weeds in the soil of gardens and cultivated fields. Large tropical and species of may be found growing on the bark of trees.

The total number of species is still uncertain. While there are more than 300 published species names, the actual number could be as low as 100–150 species.


Description
Like all bryophytes, the dominant life phase of a hornwort is the . This stage usually grows as a thin rosette or ribbon-like between one and five centimeters in diameter. Hornworts have lost two division-associated genes, ARC3 and FtsZ2, and have just a single per cell (monoplastidy), with the exception of the genus and some species in the genera and , which have more than one chloroplast per cell (polyplastidy). In the polyplastidic species, and also some of the monoplastidic species, a cellular structure called a is absent. Hornworts: An Overlooked Window into Carbon-Concentrating Mechanisms - Villarreal Lab The is a liquid-like organelle which enables a more efficient photosynthesis, has evolved independently five to six times in hornworts and is present in half of the roughly 200 species. It is formed by the fusion of the chloroplast with other and is composed predominantly of , the key enzyme in carbon fixation. By using inorganic carbon transporters and carbonic anhydrases, up to a 50-fold increase in levels can be achieved. This particular feature is very unusual in land , unique to hornworts, but is common among . BTI researchers unlocking hornworts' secrets | EurekAlert! Science News They are also the only group of land plants where are completely absent.

Many hornworts develop internal -filled cavities or canals when groups of cells break down. These cavities secrete hormogonium-inducing factors (HIF) that stimulate nearby, free-living , especially species of , to invade and colonize these cavities. Such colonies of bacteria growing inside the thallus give the hornwort a distinctive blue-green color. Symbiotic have not been reported in or .

(2025). 9781466504783, CRC Press. .
There may also be small slime pores on the underside of the . These pores superficially resemble the of other plants.

The horn-shaped grows from an embedded deep in the gametophyte. The growth of the hornwort sporophyte happens from a persistent basal , in contrast to the sporophyte of moss (apical growth) and liverworts (intercalary growth). Unlike , hornworts have true on their sporophyte as most mosses do. The exceptions are the species Folioceros incurvus, the genus and the three closely related genera , and , which do not have stomata. Classification of the Phylum Anthocerotophyta Stotl. & Crand.-Stotl. Notothylas also differ from other hornworts in having a reduced sporophyte only a few millimeters tall. The sporophyte in hornworts is unique among bryophytes in being long-lived with a persistent photosynthetic capacity. The sporophyte lacks an , an -sensitive point of divergence with other land plants some time in the /.

(2025). 9780123395528, .

When the sporophyte is mature, it has a multicellular outer layer, a central rod-like columella running up the center, and a layer of tissue in between that produces spores and . The pseudo-elaters are multi-cellular, unlike the elaters of . They have thickenings that change shape in response to drying out; they twist and thereby help to disperse the spores. Hornwort spores are relatively large for , measuring between 30 and 80 in diameter or more. The spores are polar, usually with a distinctive Y-shaped tri-radiate ridge on the proximal surface, and with a distal surface ornamented with bumps or spines.


Life cycle
The life of a hornwort starts from a spore. The spores can be yellow, brown or green. Yellow and brown spores have a thicker wall and contain oils that both protect against desiccation and function as a nutrient storage, allowing them to survive for years. The species Folioceros fuciformis and the genera Megaceros, Nothoceros and Dendroceros have short-lived spores with thin and colorless walls that appear green due to the presence of a chloroplast. Bryophyte Biology NEW CLASSIFICATION OF ANTHOCEROTAE - J-Stage In most species, there is a single cell inside the spore, and a slender extension of this cell called the germ tube germinates from the proximal side of the spore. The tip of the germ tube divides to form an octant (solid geometry) of cells, and the first grows as an extension of the original germ cell. The tip continues to divide new cells, which produces a thalloid . By contrast, species of the family may begin dividing within the spore, becoming and even before the spore germinates. In either case, the protonema is a transitory stage in the life of a hornwort.

From the protonema grows the adult , which is the persistent and independent stage in the life cycle. This stage usually grows as a thin rosette or ribbon-like between one and five centimeters in diameter, and several layers of cells in thickness. It is green or yellow-green from the in its cells, or bluish-green when colonies of cyanobacteria grow inside the plant.

When the gametophyte has grown to its adult size, it produces the sex organs of the hornwort. Most plants are , with both sex organs on the same plant, but some plants (even within the same species) are , with separate male and female gametophytes. The female organs are known as (singular archegonium) and the male organs are known as (singular antheridium). Both kinds of organs develop just below the surface of the plant and are only later exposed by disintegration of the overlying cells.

The biflagellate must swim from the antheridia, or else be splashed to the archegonia. When this happens, the sperm and egg cell fuse to form a , the cell from which the sporophyte stage of the life cycle will develop. Unlike all other bryophytes, the first cell division of the zygote is longitudinal. Further divisions produce three basic regions of the sporophyte.

At the bottom of the (closest to the interior of the gametophyte), is a foot. This is a globular group of cells that receives nutrients from the parent gametophyte, on which the sporophyte will spend its entire existence. In the middle of the sporophyte (just above the foot), is a that will continue to divide and produce new cells for the third region. This third region is the . Both the central and surface cells of the capsule are sterile, but between them is a layer of cells that will divide to produce and . These are released from the capsule when it splits lengthwise from the tip.


Evolutionary history
While the fossil record of hornworts only begins in the upper , the lower Devonian may represent a stem group to the clade, as it possesses a with central columella not attached at the roof. However, the same form of columella is also characteristic of basal moss groups, such as the and , and has been interpreted as a character common to all early land plants with .
(1997). 9781560987307, Smithsonian Institution Press.
The divergence between hornworts and (mosses and liverworts) is estimated to have occurred 479–450 million years ago, and the last common ancestor of present-day hornworts lived in middle Permian about 275 million years ago. Chromosome-scale genome sequencing of three hornwort species corroborates that stomata evolved only once during land plant evolution. It also shows that the three groups of share a common ancestor that branched off from the other landplants early in evolution, and that and are more closely related to each other than to hornworts. Unlike other land plants, the hornwort genome has the low- inducible B gene (LCIB), which is also found in some species of algae. Because the diffusion rate of carbon dioxide is 10,000-fold higher in air than in water, aquatic algae require a mechanism to concentrate CO2 in chloroplasts so as to allow the photosynthetic protein to function efficiently. LCIB is one component of this CO2-concentrating mechanism.


Classification
Hornworts were traditionally considered a class within the division Bryophyta (). Later on, the bryophytes were considered , and hence the hornworts were given their own division, Anthocerotophyta (sometimes misspelled Anthocerophyta). However, the most recent phylogenetic evidence leans strongly towards bryophyte monophyly, and it has been proposed that hornworts are de-ranked to the original class Anthocerotopsida.

Traditionally, there was a single class of hornworts, called Anthocerotopsida, or older Anthocerotae. More recently, a second class Leiosporocertotopsida has been segregated for the singularly unusual species Leiosporoceros dussii. All other hornworts remain in the class Anthocerotopsida. These two classes are divided further into five orders, each containing a single family.

Among land plants, hornworts are one of the earliest-diverging lineages of the early land plant ancestors; cladistic analysis implies that the group originated prior to the , around the same time as the mosses and liverworts. There are about 200 known, but new species are still being discovered. The number and names of are a current matter of investigation, and several competing classification schemes have been published since 1988.

Structural features that have been used in the classification of hornworts include: the anatomy of chloroplasts and their numbers within cells, the presence of a , the numbers of within androecia, and the arrangement of jacket cells of the antheridia.


Phylogeny
Recent studies of molecular, ultrastructural, and morphological data have yielded a new classification of hornworts.

Class Leiosporocerotopsida
Leiosporocerotales
* Leiosporocerotaceae
** (1 species)

Class Anthocerotopsida

Anthocerotales
*
** (ca. 83 species)
** (17 species)
** Sphaerosporoceros (2 species)

Notothyladales
*
** (21 species)
** (ca. 41 species)
** (1–2 species)
** (1 species)
** (2 species)

Phymatocerotales
* Phymatocerotaceae
** (2 species)

Dendrocerotales
*
** (43 species)
** (8 species)
** (7 species)
** (7 species)

The current and composition of the Anthocerotophyta.


See also

  • Renzaglia, Karen S. & Vaughn, Kevin C. (2000). Anatomy, development, and classification of hornworts. In A. Jonathan Shaw & Bernard Goffinet (Eds.), Bryophyte Biology, pp. 1–20. Cambridge: Cambridge University Press. .
  • (1971). 9780091093013, Hutchinson University Library. .

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
3s Time