Carnosauria is an extinct group of carnivorous theropod that lived during the Jurassic and Cretaceous periods.
While Carnosauria was historically considered largely synonymous with Allosauroidea, some recent studies have revived Carnosauria as clade including both Allosauroidea and Megalosauroidea (which is sometimes recovered as paraphyletic with respect to Allosauroidea), and thus including the majority of non-Coelurosauria members of theropod clade Tetanurae. Other researchers have found Allosauroidea and Megalosauroidea to be unrelated groups.Cau A. (2024). A Unified Framework for Predatory Dinosaur Macroevolution. Bollettino della Società Paleontologica Italiana, 63(1): 1-19.
Distinctive characteristics of carnosaurs include large , a long narrow skull and modifications of the legs and pelvis such as the thigh (femur) being longer than the shin (tibia).
Carnosaurs first appeared in the Middle Jurassic around , and the last definitive carnosaur family Carcharodontosauridae became extinct in the Turonian epoch of the Late Cretaceous around . Some theropod remains, once suggested to be putative carcharodontosaurids from the Maastrichtian epoch (72–66 mya) in South America, were later reinterpreted as those of other theropod groups including the Abelisauridae and .
Carnosaurs maintained a similar center of mass across all sizes, which is found to be between 37% and 58% of the femoral length anterior to the hip. Other similarities across all carnosaurs include the structure of their hind limb and pelvis. The pelvis in particular is thought to be designed to reduce stress regardless of body size. In particular, the way the femur is inclined reduces the bending and torsion stress. Furthermore, like other animals with tails, carnosaurs possess a caudofemoralis longus (CFL) muscle that allowed them to flex theirs. Larger carnosaurs are found to have a lower CFL muscle-to-body-mass proportion that smaller carnosaurs.
In addition to body similarities, most carnosaurs, especially most allosauroids are also united by certain skull features. Some of the defining ones include a smaller Mandible fenestra, a short Quadrate bone bone, and a short connection between the braincase and the palate. Allosauroid skulls are about 2.5 to 3 times longer as they are tall. Their narrow skull along with their serrated teeth allow carnosaurs to better slice flesh off of their prey. Carnosaur teeth are flat and have equally-sized denticles on both edges. The flat side of the tooth face the sides of the skull, while the edges align on the same plane as the skull. From analyzing the skull of different carnosaurs, the volume of the cranial vault ranges between 95 milliliters in Sinraptor to 250 milliliters in Giganotosaurus.Paulina-Carabajal, Ariana & Currie, Philip. (2012). New information on the braincase and endocast of Sinraptor dongi (Theropoda: Allosauroidea): Ethmoidal region, endocranial anatomy and pneumaticity. Vertebrata PalAsiatica. 50. 85-101.
Allosaurus and Concavenator preserve skin impressions showing their integument. In Allosaurus, skin impressions showing small scales measuring 1-3 mm are known from the side of the torso and the mandible. Another skin impression from the ventral side of the neck preserves broad scutate scales. An impression from the base of the tail preserves larger scales around 2 cm in diameter. However, it has been noted that these may be Sauropoda scales due to their similarity and the fact that non-theropod remains were discovered associated with the tail of this particular Allosaurus specimen. Concavenator preserves rectangular scutate scales on the underside of the tail, as well as scutate scales on the feet along with small scales. A series of knobs on the ulna of Concavenator have been interpreted by some authors as quill knobs theorized to have supported primitive quills; however this interpretation has been questioned, and they have been suggested to represent traces of ligaments instead.
One such clade is Neovenatoridae, a proposed clade of carcharodontosaurian carnosaurs uniting some primitive members of the group such as Neovenator with the Megaraptora, a group of theropods with controversial affinities. Other studies recover megaraptorans as basal Coelurosauria unrelated to carcharodontosaurs. Other theropods with uncertain affinities such as Gualicho, Chilantaisaurus and Deltadromeus are also sometimes included.
Neovenatoridae, as formulated by these authors, contained Neovenator, Chilantaisaurus, and a newly named clade: Megaraptora. Megaraptora contained Megaraptor, Fukuiraptor, Orkoraptor, Aerosteon, and Australovenator. These genera were allied with the other neovenatorids on the basis of several features spread out throughout the skeleton, particularly the large amount of pneumatization present. The pneumatic ilium of Aerosteon was particularly notable, as Neovenator was the only other taxon known to have that trait at the time. Neovenatorids were envisioned as the latest-surviving allosauroids, which were able to persist well into the Late Cretaceous due to their low profile and coelurosaur-like adaptations. Later studies supported this hypothesis, such as Carrano, Benson & Sampson large study of tetanuran relationships in 2012, and Zanno & Makovicky description of the newly discovered theropod Siats in 2013, which they placed within Megaraptora. Fukuiraptor and Australovenator were consistently found to be close relatives of each other; this was also the case for Aerosteon and Megaraptor. Orkoraptor was a taxon difficult to place with certainty.
Phylogenetic studies conducted by Benson, Carrano and Brusatte (2010) and Carrano, Benson and Sampson (2012) recovered the group Megaraptora and a few other taxa as members of the Neovenatoridae. This would make neovenatorids the latest-surviving allosauroids; at least one megaraptoran, Orkoraptor, lived near the end of the Mesozoic era, dating to the early Maastrichtian stage of the latest Cretaceous period, about 70 million years ago.
The cladogram below follows a 2016 analysis by Sebastián Apesteguía, Nathan D. Smith, Rubén Juarez Valieri, and Peter J. Makovicky based on the dataset of Carrano et al. (2012).
Subsequent analyses have contradicted the above hypothesis. Novas and colleagues conducted an analysis in 2012 which found that Neovenator was closely related to carcharodontosaurids, simultaneously found Megaraptor and related genera to be Coelurosauria closely related to Tyrannosauridae. However, Novas et al. subsequently found that megaraptorans lacked most of the key features in the hands of derived coelurosaurs including Guanlong and Deinonychus. Instead, their hands retain a number of primitive characteristics seen in basal tetanurans such as Allosaurus. Nevertheless, there are still a number of other traits that support megaraptorans as members of the Coelurosauria. Other taxa like Deltadromeus and Gualicho have been alternatively recovered as coelurosaurs or noasaurid ceratosaurs. Over the recent years, a majority of researchers have increasingly classified as Coelurosauria.
Several recent analyses do not find a relationship between Neovenator and megaraptorans, which suggests that the latter were not carnosaurs or allosauroids. As a result of these findings, and the fact that Neovenator itself is the only uncontroversial neovenatorid, the family Neovenatoridae sees little use in recent publications.
In 2019, Rauhut and Pol described Asfaltovenator, a basal allosauroid displaying a mosaic of primitive and derived features seen within Tetanurae. Their phylogenetic analysis found traditional Megalosauroidea to represent a basal grade of carnosaurs, paraphyly with respect to Allosauroidea. Because the authors amended the definition of Allosauroidea to include all theropods that are closer to Allosaurus fragilis than to either Megalosaurus bucklandii or Neornithes, the Piatnitzkysauridae was found to fall within Allosauroidea. A cladogram displaying the relationships they recovered is shown below.
In 2025, photos of the destroyed holotype of Carcharodontosaurus were re-examined by Maximilian Kellermann and colleagues and were used to erect the new genus Tameryraptor. A byproduct of this study was the recovery of a novel phylogenetic arrangement of carnosaurs. They did not recover megalosauroids as close relatives of allosauroids. Within Allosauroidea, their analyses, based on the dataset published by Wang and colleagues in 2017, consistently found Metriacanthosauridae and Carcharodontosauridae as sister taxa. They named this novel clade Carcharodontosauriformes and defined it as the least-inclusive clade containing both Carcharodontosaurus and Sinraptor. A simplified version of one of the cladograms they published are shown below.
The injuries were also found to be mostly healed. This healing may indicate that allosauroids had an intermediate metabolic rate, similar to non-avian reptiles, which means they require fewer nutrients in order to survive. A lower nutrient requirement means allosauroids do not need to undertake frequent hunts, which lowers their risk of sustaining traumatic injuries.
Although the remains of other large theropods like tyrannosaurids bear evidence of fighting within their species and with other predators, the remains of allosauroids do not bear much evidence of injuries from theropod combat. Most notably, despite a good fossil record, allosauroid skulls lack the distinctive face-biting wounds that are common in tyrannosaurid skulls, leaving open the question of if allosauroids engaged in interspecies and intraspecies fighting. Remains of the allosauroid Mapusaurus are also often found in groups, which could imply the existence of social behavior. While there are alternative explanations for the groupings, like or habitat reduction due to drought, the frequency of finding allosauroid remains in groups supports the social animal theory. As social animals, allosauroids would share the burden of hunting, allowing injured members of the pack to recover faster.
Specifically, a world-wide dispersal of carcharodontosaurids likely happened in the Early Cretaceous. It has been hypothesized that the dispersal involved Italy's Apulia region (the “heel” of the Italian peninsula), which was connected to Africa by a land bridge during the Early Cretaceous period; various dinosaur footprints found in Apulia support this theory. Allosauroids were present in both the northern and southern continents during the Jurassic and Early Cretaceous, but they were later displaced by the tyrannosauroids in North America and Asia during the Late Cretaceous. This is likely due to regional extinction events, which, along with increased species isolation through the severing of land connections between the continents, differentiated many dinosaurs in the Late Cretaceous.
|
|