Akashiwo sanguinea is a species of marine well known for forming blooms that result in red tides. The organism is unarmored (naked). Therefore, it lacks a thick cellulose wall, the theca, common in other genera of dinoflagellates. Reproduction of the phytoplankton species is primarily asexual.
Recently recognized as mixotrophic, A. sanguinea is capable of preying on various organisms. For example, A. sanguinea is found to be capable of ingesting the cyanobacterium Synechococcus sp. at values comparable to other heterotrophic phytoplankton. This suggests implications it may have on the grazing impact of Synechococcus.
Akashiwo sanguinea responds to certain changes in the water column by forming subsurface chlorophyll maximum layers in the marine environment. A study off of Southern California's coast observed a subsurface layer when nitrate was limiting to the organism. A. sangiunea's subsurface chlorophyll maximum layer has contributed to the success of larval anchovy growth on California's coastline. The larva have been observed to ingest this organism and not other species such as Chaetoceros spp. and Thalassiosira spp. suggesting a preference for A. sanguinea over other dinoflagellates.
The names listed above were used during prior research on the organism. The genus is now redefined into four new genera. Gymnodinium was one of many dinoflagellate genera declared when taxonomic nomenclature was limited to features only visible with the light microscope. In 2000, Hansen and Moestrup analyzed ultrastructural details of the organism using large-subunit (LSU) rDNA sequencing. Aided by this new technology, the scientists were able to declare variations in the path of the apical groove of the organism (found on the flagellar apparatus). Since the apical groove varies among species, the scientists used it to indicate differences between the unarmored flagellates. Akashiwo was one of four new genera that was redefined using the analysis.
The protist can produce mycosporine-like amino acids (MAAs) which are water-soluble surfactants. A red tide caused by A. sanguinea was coincident with widespread seabird mortality across fourteen different species of birds in November–December 2007 in Northeastern Monterey Bay, California. Plankton samples showed A. sanguinea as the dominant flagellate in the bloom. Affected birds accumulated a proteinaceous material on their feathers, causing a loss in the natural water repellency. However no toxins, such as domoic acid, saxitoxin or brevetoxin was detected in the water. It was the first documented case of its tide causing harm to birds. In 2009 a huge foam event blamed on Akashiwo sanguinea killed vast quantities of sea birds from the northern Oregon coast to the tip of the Olympic Peninsula in Washington state.
The species’ blooms have also been linked to coral bleaching. More research is needed before predictions of HAB events that may be linked with this species.
|
|